ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of surface roughness in nanogap plasmonic systems

84   0   0.0 ( 0 )
 نشر من قبل Cristian Cirac\\`i
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent results have shown unprecedented control over separation distances between two metallic elements hundreds of nanometers in size, underlying the effects of free-electron nonlocal response also at mid-infrared wavelengths. Most of metallic systems however, still suffer from some degree of inhomogeneity due to fabrication-induced surface roughness. Nanoscale roughness in such systems might hinder the understanding of the role of microscopic interactions. Here we investigate the effect of surface roughness in coaxial nanoapertures resonating at mid-infrared frequencies. We show that although random roughness shifts the resonances in an unpredictable way, the impact of nonlocal effects can still be clearly observed. Roughness-induced perturbation on the peak resonance of the system shows a strong correlation with the effective gap size of the individual samples. Fluctuations due to fabrication imperfections then can be suppressed by performing measurements on structure ensembles in which averaging over a large number of samples provides a precise measure of the ideal systems optical properties.

قيم البحث

اقرأ أيضاً

The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements of the incident field and to the confinement of light to small regions, typically several orders of magnitude smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges. Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts for fabrication tolerances and measurement uncertainties. In this paper, we develop a reduced order modeling framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures for a wide range of geometry and material parameters. The main ingredients of the proposed method are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation of the time-harmonic Maxwells equations to account for geometry variations; and (iii) proper orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model. To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore optimal designs of a 3D periodic annular nanogap structure.
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out a nd diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density nanoparticles than the spill-out effect.
Modern-day computers use electrical signaling for processing and storing data which is bandwidth limited and power-hungry. These limitations are bypassed in the field of communications, where optical signaling is the norm. To exploit optical signalin g in computing, however, new on-chip devices that work seamlessly in both electrical and optical domains are needed. Phase change devices can in principle provide such functionality, but doing so in a single device has proved elusive due to conflicting requirements of size-limited electrical switching and diffraction-limited photonic devices. Here, we combine plasmonics, photonics and electronics to deliver a novel integrated phase-change memory and computing cell that can be electrically or optically switched between binary or multilevel states, and read-out in either mode, thus merging computing and communications technologies.
Vacuum fluctuations are a fundamental feature of quantized fields. It is usually assumed that observations connected to vacuum fluctuations require a system well isolated from other influences. In this work, we demonstrate that effects of the quantum vacuum can already occur in simple colloidal nano-assemblies prepared by wet chemistry. We claim that the electromagnetic field fluctuations at the zero-point level saturate the absorption of dye molecules self-assembled at the surface of plasmonic nano-resonators. For this effect to occur, reaching the strong coupling regime between the plasmons and excitons is not required. This intriguing effect of vacuum-induced saturation (VISA) is discussed within a simple quantum optics picture and demonstrated by comparing the optical spectra of hybrid gold-core dye-shell nanorods to electromagnetic simulations.
We analyze, both theoretically and numerically, the temperature dependent thermal conductivity k{appa} of two-dimensional nanowires with surface roughness. Although each sample is characterized by three independent parameters - the diameter (width) o f the wire, the correlation length and strength of the surface corrugation - our theory predicts that there exists a universal regime where k{appa} is a function of a single combination of all three model parameters. Numerical simulations of propagation of acoustic phonons across thin wires confirm this universality and predict a d 1/2 dependence of k{appa} on the diameter d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا