ﻻ يوجد ملخص باللغة العربية
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecular dynamics simulations. We approximately include this opacity in simulations of SNe. We find that pasta slows neutrino diffusion and greatly increases the neutrino signal at late times of 10 or more seconds after stellar core collapse. This signal, for a galactic SN, should be clearly visible in large detectors such as Super-Kamiokande.
The importance of detecting neutrinos from a Milky Way core-collapse supernova is well known. An under-studied phase is proto-neutron star cooling. For SN 1987A, this seemingly began at about 2 s, and is thus probed by only 6 of the 19 events (and on
Neutron stars are formed in core-collapse supernova explosions, where a large number of neutrinos are emitted. In this paper, supernova neutrino light curves are computed for the cooling phase of protoneutron stars, which lasts a few minutes. In the
Event spectra of the neutrino-$^{16}$O charged-current reactions in Super-Kamiokande are evaluated for a future supernova neutrino burst. Since these channels are expected to be useful for diagnosing a neutrino spectrum with high average energy, the
A new quantum effect connected with the late time behavior of decaying states is described and its possible observational consequences are analyzed: It is shown that charged unstable particles as well as neutral unstable particles with non--zero magn
X-ray observations of the neutron star in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of $approx$ $2-5.5%$. One explanation suggests the rapid cooling is triggered by the onset o