ﻻ يوجد ملخص باللغة العربية
Event spectra of the neutrino-$^{16}$O charged-current reactions in Super-Kamiokande are evaluated for a future supernova neutrino burst. Since these channels are expected to be useful for diagnosing a neutrino spectrum with high average energy, the evaluations are performed not only for an ordinary supernova neutrino model but also for a model of neutrino emission from a black-hole-forming collapse. Using shell model results, whose excitation energies are consistent with the experimental data, the cross sections of the $^{16}$O($ u_e, e^-$)X and $^{16}$O($bar u_e, e^+$)X reactions for each nuclear state with a different excitation energy are employed in this study. It is found that, owing to the components of the reaction with higher excitation energy, the event spectrum becomes 4-7 MeV softer than that in the case without considering the excitation energies. In addition, a simplified approach to evaluate the event spectra is proposed for convenience and its validity is examined.
In this paper, we study charged current deep inelastic scattering of muon neutrinos off ^{56}Fe nuclei using Hirai, Kumano and Saito model. The LHA Parton Distribution Functions (PDFs) - CT10 are used to describe the partonic content of hadrons. Modi
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecula
Neutron stars are formed in core-collapse supernova explosions, where a large number of neutrinos are emitted. In this paper, supernova neutrino light curves are computed for the cooling phase of protoneutron stars, which lasts a few minutes. In the
We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MI