ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged-current scattering off $^{16}$O nucleus as a detection channel for supernova neutrinos

174   0   0.0 ( 0 )
 نشر من قبل Ken'ichiro Nakazato
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Event spectra of the neutrino-$^{16}$O charged-current reactions in Super-Kamiokande are evaluated for a future supernova neutrino burst. Since these channels are expected to be useful for diagnosing a neutrino spectrum with high average energy, the evaluations are performed not only for an ordinary supernova neutrino model but also for a model of neutrino emission from a black-hole-forming collapse. Using shell model results, whose excitation energies are consistent with the experimental data, the cross sections of the $^{16}$O($ u_e, e^-$)X and $^{16}$O($bar u_e, e^+$)X reactions for each nuclear state with a different excitation energy are employed in this study. It is found that, owing to the components of the reaction with higher excitation energy, the event spectrum becomes 4-7 MeV softer than that in the case without considering the excitation energies. In addition, a simplified approach to evaluate the event spectra is proposed for convenience and its validity is examined.

قيم البحث

اقرأ أيضاً

In this paper, we study charged current deep inelastic scattering of muon neutrinos off ^{56}Fe nuclei using Hirai, Kumano and Saito model. The LHA Parton Distribution Functions (PDFs) - CT10 are used to describe the partonic content of hadrons. Modi fication of PDFs inside the nuclei is done using EPPS16 parameterization at next-to-leading order. Target mass correction has also been incorporated in the calculations. We calculate the structure functions (F_{2}(x,Q^{2}) and xF_{3}(x,Q^{2})), the ratios (R_{2}(x,Q^{2}) = frac{F^{^{56}Fe}_{2}}{F^{Nucleon}_{2}} and R_{3}(x,Q^{2}) = frac{F^{^{56}Fe}_{3}}{F^{Nucleon}_{3}}) and the differential cross sections of muon neutrino deep inelastic scattering off a nucleon and ^{56}Fe nuclei. We compare the obtained results with measured experimental data. The present theoretical approach gives a good description of data.
We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecula r dynamics simulations. We approximately include this opacity in simulations of SNe. We find that pasta slows neutrino diffusion and greatly increases the neutrino signal at late times of 10 or more seconds after stellar core collapse. This signal, for a galactic SN, should be clearly visible in large detectors such as Super-Kamiokande.
Neutron stars are formed in core-collapse supernova explosions, where a large number of neutrinos are emitted. In this paper, supernova neutrino light curves are computed for the cooling phase of protoneutron stars, which lasts a few minutes. In the numerical simulations, 90 models of the phenomenological equation of state with different incompressibilities, symmetry energies, and nucleon effective masses are employed for a comprehensive study. It is found that the cooling timescale is longer for a model with a larger neutron star mass and a smaller neutron star radius. Furthermore, a theoretical expression of the cooling timescale is presented as a function of the mass and radius and it is found to describe the numerical results faithfully. These findings suggest that diagnosing the mass and radius of a newly formed neutron star using its neutrino signal is possible.
We compare the results of the relativistic Greens function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MI NER$ u$A and MiniBooNE charged-current quasielastic scattering data, underpredicts the inclusive T2K cross sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا