ترغب بنشر مسار تعليمي؟ اضغط هنا

The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta

81   0   0.0 ( 0 )
 نشر من قبل William Newton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray observations of the neutron star in the Cas A supernova remnant over the past decade suggest the star is undergoing a rapid drop in surface temperature of $approx$ $2-5.5%$. One explanation suggests the rapid cooling is triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). Using consistent neutron star crust and core equations of state (EOSs) and compositions, we explore the sensitivity of this interpretation to the density dependence of the symmetry energy $L$ of the EOS used, and to the presence of enhanced neutrino cooling in the bubble phases of crustal nuclear pasta. Modeling cooling over a conservative range of neutron star masses and envelope compositions, we find $Llesssim70$ MeV, competitive with terrestrial experimental constraints and other astrophysical observations. For masses near the most likely mass of $Mgtrsim 1.65 M_{odot}$, the constraint becomes more restrictive $35lesssim Llesssim 55$ MeV. The inclusion of the bubble cooling processes decreases the cooling rate of the star during the PBF phase, matching the observed rate only when $Llesssim45$ MeV, taking all masses into consideration, corresponding to neutron star radii $lesssim 11$km.

قيم البحث

اقرأ أيضاً

The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser ved surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron stars temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.
The structure and composition of the inner crust of neutron stars, as well as global stellar properties such as radius and moment of inertia, have been shown to correlate with parameters characterizing the symmetry energy of nuclear matter such as it s magnitude J and density dependence L at saturation density. It is thus mutually beneficial to nuclear physicists and astrophysicists to examine the combined effects of such correlations on potential neutron star observables in the light of recent experimental and theoretical constraints on J, L, and relationships between them. We review some basic correlations between these nuclear and astrophysical observables, and illustrate the impact of recent progress in constraining the J-L parameter space on the composition of the inner crust, crust-core transition density and pressure, and extent of the hypothesized pasta region. We use a simple compressible liquid drop model in conjunction with a simple model of nuclear matter which allows for independent, smooth, variation of the J and L. We extend the model into the core using the same nuclear matter model to explore the effects on global crust and core properties, and on potential observables such as crust oscillation frequencies and mechanically supported crust deformation. Throughout we illustrate the importance of the relationship between J and L implicit in a particular model of nuclear matter to the predictions of neutron star properties.
In the framework of the relativistic mean field model with Thomas-Fermi approximation, we study the structures of low density nuclear matter in a three-dimensional geometry with reflection symmetry. The numerical accuracy and efficiency are improved by expanding the mean fields according to fast cosine transformation and considering only one octant of the unit cell. The effect of finite cell size is treated carefully by searching for the optimum cell size. Typical pasta structures (droplet, rod, slab, tube, and bubble) arranged in various crystalline configurations are obtained for both fixed proton fractions and $beta$-equilibration. It is found that the properties of droplets/bubbles are similar in body-centered cubic (BCC) and face-centered cubic (FCC) lattices, where the FCC lattice generally becomes more stable than BCC lattice as density increases. For the rod/tube phases, the honeycomb lattice is always more stable than the simple one. By introducing an $omega$-$rho$ cross coupling term, we further examine the pasta structures with a smaller slope of symmetry energy $L = 41.34$ MeV, which predicts larger onset densities for core-crust transition and non-spherical nuclei. Such a variation due to the reduction of $L$ is expected to have impacts on various properties in neutron stars, supernova dynamics, and binary neutron star mergers.
123 - D. Blaschke 2011
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained wi thin the nuclear medium cooling scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.
We investigate the nuclear pasta phases in neutron star crusts by conducting a large number of three-dimensional Hartree-Fock+BCS calculations at densities leading to the crust-core transition. We survey the shape parameter space of pasta at constant pressure. Spaghetti, waffles, lasagna, bi-continuous phases and cylindrical holes occupy local minima in the resulting Gibbs energy surfaces. The bi-continuous phase, in which both the neutron gas and nuclear matter extend continuously in all dimensions and therefore protons are delocalized, appears over a large range of depths. Our results support the idea that nuclear pasta is a glassy system. Multiple pasta configurations coexist in a given layer of the crust. At a characteristic temperature, of order $10^8$-$10^9$K, different phases become frozen into domains whose sizes we estimate to be 1-50 times the lattice spacing and over which the local density and electron fraction can vary. Above this temperature, there is very little long-range order and matter is an amorphous solid. Electron scattering off domain boundaries may contribute to the disorder resistivity of the pasta phases. Annealing of the domains may occur during cooling; repopulating of local minima during crustal heating might lead to temperature dependent transport properties in the deep layers of the crust. We identify 4 distinct regions: (1) nuclear pasta first appears as a local minima, but spherical nuclei are the ground state; (2) nuclear pasta become the absolute minimum, but spherical nuclei are still a local minimum (3) only nuclear pasta appears in local minima, and protons are still localized in at least one dimension (4) only pasta appears, and protons are delocalized. The whole pasta region can occupy up to 70% of the crust by mass and 40% by thickness, and the layer in which protons are delocalized could occupy 45% of the crust mass and 25% of its thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا