ﻻ يوجد ملخص باللغة العربية
We present a quantitative and comparative study of magnetic field driven domain wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive and thermal effects on the depinning transition, including critical exponents. The consistent description we obtain for both the depinning and subthreshold thermally activated creep motion should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered energy landscapes.
Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall
The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key
Magnetic field driven domain wall dynamics in a ferrimagnetic GdFeCo thin film with perpendicular magnetic anisotropy is studied using low temperature magneto-optical Kerr microscopy. Measurements performed in a practically athermal condition allow f
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-fie
With Monte Carlo simulations, we systematically investigate the depinning phase transition in the two-dimensional driven random-field clock model. Based on the short-time dynamic approach, we determine the transition field and critical exponents. The