ترغب بنشر مسار تعليمي؟ اضغط هنا

Depinning phase transition in two-dimensional clock model with quenched randomness

128   0   0.0 ( 0 )
 نشر من قبل Xiaoping Qin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With Monte Carlo simulations, we systematically investigate the depinning phase transition in the two-dimensional driven random-field clock model. Based on the short-time dynamic approach, we determine the transition field and critical exponents. The results show that the critical exponents vary with the form of the random-field distribution and the strength of the random fields, and the roughening dynamics of the domain interface belongs to the new subclass with $zeta eq zeta_{loc} eq zeta_s$ and $zeta_{loc} eq 1$. More importantly, we find that the transition field and critical exponents change with the initial orientations of the magnetization of the two ordered domains.



قيم البحث

اقرأ أيضاً

The principle characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here, the disorder allows for negative edge-weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization (ACO) heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter rho that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of rho for different bias strengths B is put under scrutiny. Upon tuning rho, the probability to find such a feasible lattice walk increases from zero to one. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point rho_c, resulting from numerically exact and static simulations in terms of the NWP model can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
We investigate the behavior of the Ising model on two connected Barabasi-Albert scale-free networks. We extend previous analysis and show that a first order temperature-driven phase transition occurs in such system. The transition between antiparalel ly ordered networks to paralelly ordered networks is shown to be discontinuous. We calculate the critical temperature. We confirm the calculations with numeric simulations using Monte-Carlo methods.
The information theoretic observables entropy (a measure of disorder), excess entropy (a measure of complexity) and multi information are used to analyze ground-state spin configurations for disordered and frustrated model systems in 2D and 3D. For b oth model systems, ground-state spin configurations can be obtained in polynomial time via exact combinatorial optimization algorithms, which allowed us to study large systems with high numerical accuracy. Both model systems exhibit a continuous transition from an ordered to a disordered ground state as a model parameter is varied. By using the above information theoretic observables it is possible to detect changes in the spatial structure of the ground states as the critical point is approached. It is further possible to quantify the scaling behavior of the information theoretic observables in the vicinity of the critical point. For both model systems considered, the estimates of critical properties for the ground-state phase transitions are in good agreement with existing results reported in the literature.
167 - X. P. Qin , B. Zheng , N. J. Zhou 2012
With Monte Carlo methods, we investigate the universality class of the depinning transition in the two-dimensional Ising model with quenched random fields. Based on the short-time dynamic approach, we accurately determine the depinning transition fie ld and both static and dynamic critical exponents. The critical exponents vary significantly with the form and strength of the random fields, but exhibit independence on the updating schemes of the Monte Carlo algorithm. From the roughness exponents $zeta, zeta_{loc}$ and $zeta_s$, one may judge that the depinning transition of the random-field Ising model belongs to the new dynamic universality class with $zeta eq zeta_{loc} eq zeta_s$ and $zeta_{loc} eq 1$. The crossover from the second-order phase transition to the first-order one is observed for the uniform distribution of the random fields, but it is not present for the Gaussian distribution.
We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y2Mo2O7, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical randomness to each other. The interplay of spins and orbitals is mediated by the Jahn-Teller lattice distortion that selects the choice of orbitals, which then generates variant spin exchange interactions ranging from ferromagnetic to antiferromagnetic ones. Our Monte Carlo simulations detect the power-law divergence of the relaxation times and the negative divergence of both the magnetic and dielectric non-linear susceptibilities, resolving the long-standing puzzle on the origin of the disorder-free spin glass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا