ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for approximately stretched-exponential relaxation with continuously varying stretching exponents

185   0   0.0 ( 0 )
 نشر من قبل Joseph Paulsen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Relaxation in glasses is often approximated by a stretched-exponential form: $f(t) = A exp [-(t/tau)^{beta}]$. Here, we show that the relaxation in a model of sheared non-Brownian suspensions developed by Corte et al. [Nature Phys. 4, 420 (2008)] can be well approximated by a stretched exponential with an exponent $beta$ that depends on the strain amplitude: $0.25 < beta < 1$. In a one-dimensional version of the model, we show how the relaxation originates from density fluctuations in the initial particle configurations. Our analysis is in good agreement with numerical simulations and reveals a functional form for the relaxation that is distinct from, but well approximated by, a stretched-exponential function.



قيم البحث

اقرأ أيضاً

We study the effect of rapid quench to zero temperature in a model with competing interactions, evolving through conserved spin dynamics. In a certain regime of model parameters, we find that the model belongs to the broader class of kinetically cons trained models, however, the dynamics is different from that of a glass. The system shows stretched exponential relaxation with the unusual feature that the relaxation time diverges as a power of the system size. Explicitly, we find that the spatial correlation function decays as $exp(-2r/sqrt{L})$ as a function of spatial separation $r$ in a system with $L$ sites in steady state, while the temporal auto-correlation function follows $exp(-(t/tau_L)^{1/2})$, where $t$ is the time and $tau_L$ proportional to $L$. In the coarsening regime, after time $t_w$, there are two growing length scales, namely $mathcal{L}(t_w) sim t_w^{1/2}$ and $mathcal{R}(t_w) sim t_w^{1/4}$; the spatial correlation function decays as $exp(-r/ mathcal{R}(t_w))$. Interestingly, the stretched exponential form of the auto-correlation function of a single typical sample in steady state differs markedly from that averaged over an ensemble of initial conditions resulting from different quenches; the latter shows a slow power law decay at large times.
There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate i n the literature. In this paper we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives.
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consisten t dynamical modeling. The key issues are, stretched exponential character of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coefficient on frequency. We propose a self-consistent model of dielectric relaxation, in which the relaxations are described by a stretched exponential decay function. Mathematically, our study refers to the expanding area of fractional calculus and we propose a systematic derivation of the fractional relaxation and fractional diffusion equations from the property of ac universality.
182 - N. Khan , P. Sarkar , A. Midya 2016
Renormalization group theory does not restrict the from of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually fo llows a weak universality scenario where some of the exponents (e.g., $beta, gamma, u$) vary keeping others (e.g., $delta , eta$) fixed. Here we report a ferromagnetic phase transition in (Sm$_{1-y}$Nd$_{y}$)$_{0.52}$Sr$_{0.48}$MnO$_3$ $(0.5le yle1)$ single crystal where all critical exponents vary with $y.$ Such variation clearly violates both universality and weak universality hypothesis. We propose a new scaling theory that explains the present experimental results, reduces to the weak universality as a special case, and provides a generic route leading to continuous variation of critical exponents and multicriticality.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0 exp[-(t/tau)^beta]$, with the exponent $beta$ increasing with the temperature. The relaxation time follows an Arrhenius behavior divergence when $Tto 0$. A relation between the specific heat and the entropy in the long time regime is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا