ﻻ يوجد ملخص باللغة العربية
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0exp[-(t/tau)^beta]$, with the exponent $beta$ increasing with the temperature. The relaxation time follows an Arrhenius behavior divergence when $Tto 0$. A relation between the specific heat and the entropy in the long time regime is found.
We study random walks on the dilute hypercube using an exact enumeration Master equation technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution $p$ the form of the relaxation of the memory function $q(t)$
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consisten
We have simulated energy relaxation and equilibrium dynamics in Coulomb Glasses using the random energy lattice model. We show that in a temperature range where the Coulomb Gap is already well developed, (T=0.03-0.1) the system still relaxes to an eq
We investigate the dielectric response in the glass-electret state of two dipolar glass-forming materials. This unusual polar glassy state of matter is produced when a dipolar liquid is supercooled under the influence of a high electric dc field, whi
We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards