ﻻ يوجد ملخص باللغة العربية
There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this paper we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives.
We study the effect of rapid quench to zero temperature in a model with competing interactions, evolving through conserved spin dynamics. In a certain regime of model parameters, we find that the model belongs to the broader class of kinetically cons
Relaxation in glasses is often approximated by a stretched-exponential form: $f(t) = A exp [-(t/tau)^{beta}]$. Here, we show that the relaxation in a model of sheared non-Brownian suspensions developed by Corte et al. [Nature Phys. 4, 420 (2008)] can
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consisten
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0