ترغب بنشر مسار تعليمي؟ اضغط هنا

On the kinematic detection of accreted streams in the Gaia era: a cautionary tale

56   0   0.0 ( 0 )
 نشر من قبل Paola Di Matteo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $Lambda$CDM cosmological scenario predicts that our Galaxy should contain hundreds of stellar streams at the solar vicinity, fossil relics of the merging history of the Milky Way and more generally of the hierarchical growth of galaxies. Because of the mixing time scales in the inner Galaxy, it has been claimed that these streams should be difficult to detect in configuration space but can still be identifiable in kinematic-related spaces like the energy/angular momenta spaces, E-Lz and Lperp-Lz, or spaces of orbital/velocity parameters. By means of high-resolution, dissipationless N-body simulations, containing between 25$times10^6$ and 35$times10^6$ particles, we model the accretion of a series of up to four 1:10 mass ratio satellites then up to eight 1:100 satellites and we search systematically for the signature of these accretions in these spaces. In all spaces considered (1) each satellite gives origin to several independent overdensities; (2) overdensities of multiple satellites overlap; (3) satellites of different masses can produce similar substructures; (4) the overlap between the in-situ and the accreted population is considerable everywhere; (5) in-situ stars also form substructures in response to the satellite(s) accretion. These points are valid even if the search is restricted to kinematically-selected halo stars only. As we are now entering the Gaia era, our results warn that an extreme caution must be employed before interpreting overdensities in any of those spaces as evidence of relics of accreted satellites. Reconstructing the accretion history of our Galaxy will require a substantial amount of accurate spectroscopic data, that, complemented by the kinematic information, will possibly allow us to (chemically) identify accreted streams and measure their orbital properties. (abridged)

قيم البحث

اقرأ أيضاً

72 - M. Molina 2019
The attenuation of light in star forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more prevalent on the kiloparsec scale, w hich is relevant to many current spectroscopic integral field unit surveys. To understand the cause of this variation, we present and analyse textit{Swift}/UVOT near-UV (NUV) images and SDSS/MaNGA emission-line maps of 29 nearby ($z<0.084$) star forming galaxies. We resolve kiloparsec-sized star forming regions within the galaxies and compare their optical nebular attenuation (i.e., the Balmer emission line optical depth, $tau^l_Bequivtau_{textrm{H}beta}-tau_{textrm{H}alpha}$) and NUV stellar continuum attenuation (via the NUV power-law index, $beta$) to the attenuation law described by Battisti et al. The data agree with that model, albeit with significant scatter. We explore the dependence of the scatter of the $beta$-$tau^l_B$ measurements from the star forming regions on different physical parameters, including distance from the nucleus, star formation rate and total dust content. Finally, we compare the measured $tau^l_B$ and $beta$ between the individual star forming regions and the integrated galaxy light. We find a strong variation in $beta$ between the kiloparsec scale and the larger galaxy scale not seen in $tau^l_B$. We conclude that the sight-line dependence of UV attenuation and the reddening of $beta$ due to the light from older stellar populations could contribute to the $beta$-$tau^l_B$ discrepancy.
Resolution studies of test problems set baselines and help define minimum resolution requirements, however, resolution studies must also be performed on scientific simulations to determine the effect of resolution on the specific scientific results. We perform a resolution study on the formation of a protostar by modelling the collapse of gas through 14 orders of magnitude in density. This is done using compressible radiative non-ideal magnetohydrodynamics. Our suite consists of an ideal magnetohydrodynamics (MHD) model and two non-ideal MHD models, and we test three resolutions for each model. The resulting structure of the ideal MHD model is approximately independent of resolution, although higher magnetic field strengths are realised in higher resolution models. The non-ideal MHD models are more dependent on resolution, specifically the magnetic field strength and structure. Stronger magnetic fields are realised in higher resolution models, and the evolution of detailed structures such as magnetic walls are only resolved in our highest resolution simulation. In several of the non-ideal MHD models, there is an off-set between the location of the maximum magnetic field strength and the maximum density, which is often obscured or lost at lower resolutions. Thus, understanding the effects of resolution on numerical star formation is imperative for understanding the formation of a star.
We model the formation of the Galactic stellar halo via the accretion of satellite galaxies onto a time-dependent semi-cosmological galactic potential. Our goal is to characterize the substructure left by these accretion events in a close manner to w hat may be possible with the {it Gaia} mission. We have created a synthetic {it Gaia} Solar Neighbourhood catalogue by convolving the 6D phase-space coordinates of stellar particles from our disrupted satellites with the latest estimates of the {it Gaia} measurement errors, and included realistic background contamination due to the Galactic disc(s) and bulge. We find that, even after accounting for the expected observational errors, the resulting phase-space is full of substructure. We are able to successfully isolate roughly 50% of the different satellites contributing to the `Solar Neighbourhood by applying the Mean-Shift clustering algorithm in energy-angular momentum space. Furthermore, a Fourier analysis of the space of orbital frequencies allows us to obtain accurate estimates of time since accretion for approximately 30% of the recovered satellites.
64 - S. C. Trager 1999
Early-type galaxies are not the simple Population II systems they have long been assumed to be. While upwards of 80% of the stellar mass of early-type galaxies likely formed at high redshift, small frostings of intermediate-age stellar populations (a few to 20% percent by mass of 1-2 Gyr old stars) are present in nearly every field and group early-type galaxy and in at least some cluster early-types. These frostings of young stars have little effect on the determination of photometric redshifts, thanks to the age-metallicity degeneracy of broad-band colors, but even mild bursts of star formation at modest redshifts (a few tenths) may make identification of the progenitors of todays early-type galaxies difficult at cosmological distances.
53 - Cecilia Mateu 2016
The Gaia astrometric mission may offer an unprecedented opportunity to discover new tidal streams in the Galactic halo. To test this, we apply nGC3, a great-circle-cell count method that combines position and proper motion data to identify streams, t o ten mock Gaia catalogues of K giants and RR Lyrae stars constructed from cosmological simulations of Milky Way analogues. We analyse two sets of simulations, one using a combination of $N$-body and semi-analytical methods which has extremely high resolution, the other using hydro-dynamical methods, which captures the dynamics of baryons, including the formation of an in situ halo. These ten realisations of plausible Galactic merger histories allow us to assess the potential for the recovery of tidal streams in different Milky Way formation scenarios. We include the Gaia~selection function and observational errors in these mock catalogues. We find that the nGC3 method has a well-defined detection boundary in the space of stream width and projected overdensity, that can be predicted based on direct observables alone. We predict that about 4-13 dwarf galaxy streams can be detected in a typical Milky Way-mass halo with Gaia+nGC3, with an estimated efficiency of $>$80% inside the detection boundary. The progenitors of these streams are in the mass range of the classical dwarf galaxies and may have been accreted as early as redshift $sim3$. Finally, we analyse how different possible extensions of the Gaia mission will improve the detection of tidal streams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا