ﻻ يوجد ملخص باللغة العربية
Resolution studies of test problems set baselines and help define minimum resolution requirements, however, resolution studies must also be performed on scientific simulations to determine the effect of resolution on the specific scientific results. We perform a resolution study on the formation of a protostar by modelling the collapse of gas through 14 orders of magnitude in density. This is done using compressible radiative non-ideal magnetohydrodynamics. Our suite consists of an ideal magnetohydrodynamics (MHD) model and two non-ideal MHD models, and we test three resolutions for each model. The resulting structure of the ideal MHD model is approximately independent of resolution, although higher magnetic field strengths are realised in higher resolution models. The non-ideal MHD models are more dependent on resolution, specifically the magnetic field strength and structure. Stronger magnetic fields are realised in higher resolution models, and the evolution of detailed structures such as magnetic walls are only resolved in our highest resolution simulation. In several of the non-ideal MHD models, there is an off-set between the location of the maximum magnetic field strength and the maximum density, which is often obscured or lost at lower resolutions. Thus, understanding the effects of resolution on numerical star formation is imperative for understanding the formation of a star.
The attenuation of light in star forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more prevalent on the kiloparsec scale, w
We explore the pitfalls which affect the comparison of the star-formation (SF) relation for nearby molecular clouds with that for distant compact molecular clumps. We show that both relations behave differently in the ($Sigma_{gas}$, $Sigma_{SFR}$) s
We present three different methods to estimate error bars on the predictions made using a neural network. All of them represent lower bounds for the extrapolation errors. For example, we did not include an analysis on robustness against small perturb
Analysis of cluster and field star uvby data demonstrates the existence of a previously undetected discrepancy in a widely used photometric metallicity calibration for G dwarfs. The discrepancy is systematic and strongly color-dependent, reducing the
We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examin