ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions for the detection of Tidal Streams with Gaia using Great Circle Methods

54   0   0.0 ( 0 )
 نشر من قبل Cecilia Mateu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cecilia Mateu




اسأل ChatGPT حول البحث

The Gaia astrometric mission may offer an unprecedented opportunity to discover new tidal streams in the Galactic halo. To test this, we apply nGC3, a great-circle-cell count method that combines position and proper motion data to identify streams, to ten mock Gaia catalogues of K giants and RR Lyrae stars constructed from cosmological simulations of Milky Way analogues. We analyse two sets of simulations, one using a combination of $N$-body and semi-analytical methods which has extremely high resolution, the other using hydro-dynamical methods, which captures the dynamics of baryons, including the formation of an in situ halo. These ten realisations of plausible Galactic merger histories allow us to assess the potential for the recovery of tidal streams in different Milky Way formation scenarios. We include the Gaia~selection function and observational errors in these mock catalogues. We find that the nGC3 method has a well-defined detection boundary in the space of stream width and projected overdensity, that can be predicted based on direct observables alone. We predict that about 4-13 dwarf galaxy streams can be detected in a typical Milky Way-mass halo with Gaia+nGC3, with an estimated efficiency of $>$80% inside the detection boundary. The progenitors of these streams are in the mass range of the classical dwarf galaxies and may have been accreted as early as redshift $sim3$. Finally, we analyse how different possible extensions of the Gaia mission will improve the detection of tidal streams.

قيم البحث

اقرأ أيضاً

During the past 20 years, numerous stellar streams have been discovered in both the Milky Way and the Local Group. These streams have been tidally torn from orbiting systems, which suggests that most of them should roughly trace the orbit of their pr ogenitors around the Galaxy. As a consequence, they play a fundamental role in understanding the formation and evolution of our Galaxy. This project is based on the possibility of applying a technique developed by Binney in 2008 to various tidal streams and overdensities in the Galaxy. The aim is to develop an efficient method to constrain the Galactic gravitational potential, to determine its mass distribution, and to test distance measurements. Here we apply the technique to the Grillmair & Dionatos cold stellar stream. In the case of noise-free data, the results show that the technique provides excellent discrimination against incorrect potentials and that it is possible to predict the heliocentric distance very accurately. This changes dramatically when errors are taken into account, which wash out most of the results. Nevertheless, it is still possible to rule out spherical potentials and set constraints on the distance of a given stream.
We measure the Suns velocity with respect to the Galactic halo using Gaia Early Data Release 3 (EDR3) observations of stellar streams. Our method relies on the fact that, in low-mass streams, the proper motion of stars should be directed along the st ream structure in a non-rotating rest frame of the Galaxy, but the observed deviation arises due to the Suns own reflex motion. This principle allows us to implement a simple geometrical procedure, which we use to analyse 17 streams over a $sim 3-30$ kpc range. Our constraint on the Suns motion is independent of any Galactic potential model, and it is also uncorrelated with the Suns galactocentric distance. We infer the Suns velocity as $V_{R,odot}=8.88^{+1.20}_{-1.22},rm{kms^{-1}}$ (radially towards the Galactic centre), $V_{phi,odot}=241.91^{+1.61}_{-1.73},rm{kms^{-1}}$ (in the direction of Galactic rotation) and $V_{z,odot}=3.08^{+1.06}_{-1.10},rm{kms^{-1}}$ (vertically upwards), in global agreement with past measurements through other techniques; although we do note a small but significant difference in the $V_{z,odot}$ component. Some of these parameters show significant correlation and we provide our MCMC output so it can be used by the reader as an input to future works. The comparison between our Suns velocity inference and previous results, using other reference frames, indicates that the inner Galaxy is not moving with respect to the inertial frame defined by the halo streams.
105 - Heidi Jo Newberg 2021
Dwarf galaxies that come too close to larger galaxies suffer tidal disruption; the differential gravitational force between one side of the galaxy and the other serves to rip the stars from the dwarf galaxy so that they instead orbit the larger galax y. This process produces tidal streams of stars, which can be found in the stellar halo of the Milky Way, as well as in halos of other galaxies. This chapter provides a general introduction to tidal streams, including the mechanism through which the streams are created, the history of how they were discovered, and the observational techniques by which they can be detected. In addition, their use in unraveling galaxy formation history and the distribution of dark matter in galaxies is discussed, as is the interaction between these dwarf galaxy satellites and the disk of the larger galaxy.
The $Lambda$CDM cosmological scenario predicts that our Galaxy should contain hundreds of stellar streams at the solar vicinity, fossil relics of the merging history of the Milky Way and more generally of the hierarchical growth of galaxies. Because of the mixing time scales in the inner Galaxy, it has been claimed that these streams should be difficult to detect in configuration space but can still be identifiable in kinematic-related spaces like the energy/angular momenta spaces, E-Lz and Lperp-Lz, or spaces of orbital/velocity parameters. By means of high-resolution, dissipationless N-body simulations, containing between 25$times10^6$ and 35$times10^6$ particles, we model the accretion of a series of up to four 1:10 mass ratio satellites then up to eight 1:100 satellites and we search systematically for the signature of these accretions in these spaces. In all spaces considered (1) each satellite gives origin to several independent overdensities; (2) overdensities of multiple satellites overlap; (3) satellites of different masses can produce similar substructures; (4) the overlap between the in-situ and the accreted population is considerable everywhere; (5) in-situ stars also form substructures in response to the satellite(s) accretion. These points are valid even if the search is restricted to kinematically-selected halo stars only. As we are now entering the Gaia era, our results warn that an extreme caution must be employed before interpreting overdensities in any of those spaces as evidence of relics of accreted satellites. Reconstructing the accretion history of our Galaxy will require a substantial amount of accurate spectroscopic data, that, complemented by the kinematic information, will possibly allow us to (chemically) identify accreted streams and measure their orbital properties. (abridged)
The dark matter halos that surround Milky Way-like galaxies in cosmological simulations are, to first order, triaxial. Nearly 30 years ago it was predicted that such triaxial dark matter halos should exhibit steady figure rotation or tumbling motions for durations of several gigayears. The angular frequency of figure rotation predicted by cosmological simulations is described by a log-normal distribution of pattern speed with a median value 0.15hkm/s/kpc (~ 0.15h rad/Gyr ~ 9h deg/Gyr) and a width of 0.83km/s/kpc. These pattern speeds are so small that they have generally been considered both unimportant and undetectable. In this work we show that even this extremely slow figure rotation can significantly alter the structure of extended stellar streams produced by the tidal disruption of satellites in the Milky Way halo. We simulate the behavior of a Sagittarius-like polar tidal stream in triaxial dark matter halos with different shapes, when the halos are rotated about the three principal axes. For pattern speeds typical of cosmological halos we demonstrate, for the first time, that a Sagittarius-like tidal stream would be altered to a degree that is detectable even with current observations. This discovery will potentially allow for a future measurement of figure rotation of the Milky Ways dark halo, and perhaps enabling the first evidence of this relatively unexplored prediction of LambdaCDM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا