ﻻ يوجد ملخص باللغة العربية
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
Spatial symmetries and invariances play an important role in the description of materials. When modelling material properties, it is important to be able to respect such invariances. Here we discuss how to model and generate random ensembles of tenso
With view to applications in stochastic analysis and geometry, we introduce a new correspondence for positive definite kernels (p.d.) $K$ and their associated reproducing kernel Hilbert spaces. With this we establish two kinds of factorizations: (i)
The effectiveness of Symmetric Positive Definite (SPD) manifold features has been proven in various computer vision tasks. However, due to the non-Euclidean geometry of these features, existing Euclidean machineries cannot be directly used. In this p
Let $mathbb{C}^{ntimes n}$ be the set of all $n times n$ complex matrices. For any Hermitian positive semi-definite matrices $A$ and $B$ in $mathbb{C}^{ntimes n}$, their new common upper bound less than $A+B-A:B$ is constructed, where $(A+B)^dag$ den
The concepts of P- and P$_0$-matrices are generalized to P- and P$_0$-tensors of even and odd orders via homogeneous formulae. Analog to the matrix case, our P-tensor definition encompasses many important classes of tensors such as the positive defin