ترغب بنشر مسار تعليمي؟ اضغط هنا

Convex Class Model on Symmetric Positive Definite Manifolds

82   0   0.0 ( 0 )
 نشر من قبل Kun Zhao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The effectiveness of Symmetric Positive Definite (SPD) manifold features has been proven in various computer vision tasks. However, due to the non-Euclidean geometry of these features, existing Euclidean machineries cannot be directly used. In this paper, we tackle the classification tasks with limited training data on SPD manifolds. Our proposed framework, named Manifold Convex Class Model, represents each class on SPD manifolds using a convex model, and classification can be performed by computing distances to the convex models. We provide three methods based on different metrics to address the optimization problem of the smallest distance of a point to the convex model on SPD manifold. The efficacy of our proposed framework is demonstrated both on synthetic data and several computer vision tasks including object recognition, texture classification, person re-identification and traffic scene classification.


قيم البحث

اقرأ أيضاً

In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent paper s have shown how convolutional neural networks (CNNs) can be extended to learn with graph-based data. In this work, we study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature and live on a Riemannian manifold -- this setting is common in a variety of problems in statistical machine learning, vision and medical imaging. We show how recurrent statistical recurrent network models can be defined in such spaces. We give an efficient algorithm and conduct a rigorous analysis of its statistical properties. We perform extensive numerical experiments demonstrating competitive performance with state of the art methods but with significantly less number of parameters. We also show applications to a statistical analysis task in brain imaging, a regime where deep neural network models have only been utilized in limited ways.
Spatial symmetries and invariances play an important role in the description of materials. When modelling material properties, it is important to be able to respect such invariances. Here we discuss how to model and generate random ensembles of tenso rs where one wants to be able to prescribe certain classes of spatial symmetries and invariances for the whole ensemble, while at the same time demanding that the mean or expected value of the ensemble be subject to a possibly higher spatial invariance class. Our special interest is in the class of physically symmetric and positive definite tensors, as they appear often in the description of materials. As the set of positive definite tensors is not a linear space, but rather an open convex cone in the linear vector space of physically symmetric tensors, it may be advantageous to widen the notion of mean to the so-called Frechet mean, which is based on distance measures between positive definite tensors other than the usual Euclidean one. For the sake of simplicity, as well as to expose the main idea as clearly as possible, we limit ourselves here to second order tensors. It is shown how the random ensemble can be modelled and generated, with fine control of the spatial symmetry or invariance of the whole ensemble, as well as its Frechet mean, independently in its scaling and directional aspects. As an example, a 2D and a 3D model of steady-state heat conduction in a human proximal femur, a bone with high material anisotropy, is explored. It is modelled with a random thermal conductivity tensor, and the numerical results show the distinct impact of incorporating into the constitutive model different material uncertainties$-$scaling, orientation, and prescribed material symmetry$-$on the desired quantities of interest, such as temperature distribution and heat flux.
91 - Yi Xu , Jinjie Liu , Liqun Qi 2016
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential M O tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matr ices, which are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds, traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical investigations on synthetic data, image data , and motor imagery EEG data demonstrate the superior performance of the proposed method.
We present the Cholesky-factored symmetric positive definite neural network (SPD-NN) for modeling constitutive relations in dynamical equations. Instead of directly predicting the stress, the SPD-NN trains a neural network to predict the Cholesky fac tor of a tangent stiffness matrix, based on which the stress is calculated in the incremental form. As a result of the special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of the SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا