ﻻ يوجد ملخص باللغة العربية
The concepts of P- and P$_0$-matrices are generalized to P- and P$_0$-tensors of even and odd orders via homogeneous formulae. Analog to the matrix case, our P-tensor definition encompasses many important classes of tensors such as the positive definite tensors, the nonsingular M-tensors, the nonsingular H-tensors with positive diagonal entries, the strictly diagonally dominant tensors with positive diagonal entries, etc. As even-order symmetric PSD tensors are exactly even-order symmetric P$_0$-tensors, our definition of P$_0$-tensors, to some extent, can be regarded as an extension of PSD tensors for the odd-order case. Along with the basic properties of P- and P$_0$-tensors, the relationship among P$_0$-tensors and other extensions of PSD tensors are then discussed for comparison. Many structured tensors are also shown to be P- and P$_0$-tensors. As a theoretical application, the P-tensor complementarity problem is discussed and shown to possess a nonempty and compact solution set.
In this paper, one of our main purposes is to prove the boundedness of solution set of tensor complementarity problem with B tensor such that the specific bounds only depend on the structural properties of tensor. To achieve this purpose, firstly, we
In this paper, we introduce the concept of an $m$-order $n$-dimensional generalized Hilbert tensor $mathcal{H}_{n}=(mathcal{H}_{i_{1}i_{2}cdots i_{m}})$, $$ mathcal{H}_{i_{1}i_{2}cdots i_{m}}=frac{1}{i_{1}+i_{2}+cdots i_{m}-m+a}, ain mathbb{R}setminu
The M-matrix is an important concept in matrix theory, and has many applications. Recently, this concept has been extended to higher order tensors [18]. In this paper, we establish some important properties of M-tensors and nonsingular M-tensors. An
In this paper, we mainly focus on how to generalize some conclusions from nonnegative irreducible tensors to nonnegative weakly irreducible tensors. To do so, a basic and important lemma is proven using new tools. First, we give the definition of sto
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential M