ﻻ يوجد ملخص باللغة العربية
We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $Lambda_overline{MS}^{(3)}=332(14)$~MeV is translated to $alpha_overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark thresholds. The error of this perturbative step is discussed and estimated as $0.0002$.
We present results by the ALPHA collaboration for the $Lambda$-parameter in 3-flavour QCD and the strong coupling constant at the electroweak scale, $alpha_s(m_Z)$, in terms of hadronic quantities computed on the CLS gauge configurations. The first p
The ALPHA collaboration aims to determine $alpha_s(m_Z)$ with a total error below the percent level. A further step towards this goal can be taken by combining results from the recent simulations of 2+1-flavour QCD by the CLS initiative with a number
We revisit the earlier determination of alpha_s(M_Z) via perturbative analyses of short-distance-sensitive lattice observables, incorporating new lattice data and performing a modified version of the original analysis. We focus on two high-intrinsic-
We determine f_K for lattice QCD in the two flavor approximation with non-perturbatively improved Wilson fermions. The result is used to set the scale for dimensionful quantities in CLS/ALPHA simulations. To control its dependence on the light quark
We describe the first lattice determination of the strong coupling constant with 3 flavors of dynamical quarks. The method follows previous analyses in using a perturbative expansion for the plaquette and Upsilon spectroscopy to set the scale. Using