ترغب بنشر مسار تعليمي؟ اضغط هنا

The Realistic Lattice Determination of alpha_s(M_Z) Revisited

145   0   0.0 ( 0 )
 نشر من قبل Kim Maltman
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the earlier determination of alpha_s(M_Z) via perturbative analyses of short-distance-sensitive lattice observables, incorporating new lattice data and performing a modified version of the original analysis. We focus on two high-intrinsic-scale observables, log(W_11) and log(W_12), and one lower-intrinsic scale observable, log(W_{12}/u_0^6), finding improved consistency among the values extracted using the different observables and a final result, alpha_s(M_Z)=0.1192(11), 2 sigma higher than the earlier result, in excellent agreement with recent non-lattice determinations and, in addition, in good agreement with the results of a similar, but not identical, re-analysis by the HPQCD Collaboration. A discussion of the relation between the two re-analyses is given, focussing on the complementary aspects of the two approaches.



قيم البحث

اقرأ أيضاً

We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to: 1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations); 2) include third-order terms in perturbation theory; 3) systematically estimate fourth and higher-order terms; 4) use an unambiguous lattice spacing; and 5) use an $order(a^2)$-accurate QCD action. We use 28~different (but related) short-distance quantities to obtain $alpha_{bar{mathrm{MS}}}^{(5)}(M_Z) = 0.1170(12)$.
We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.
We report on an estimate of alpha_s, renormalised in the MSbar scheme at the tau and Z^0 mass scales, by means of lattice QCD. Our major improvement compared to previous lattice calculations is that, for the first time, no perturbative treatment at t he charm threshold has been required since we have used statistical samples of gluon fields built by incorporating the vacuum polarisation effects of u/d, s and c sea quarks. Extracting alpha_s in the Taylor scheme from the lattice measurement of the ghost-ghost-gluon vertex, we obtain alpha_s^{MSbar}(m^2_Z)=0.1200(14) and alpha_s^{MSbar}(m^2_tau)=0.339(13).
62 - C.Davies , A.Gray , M.Alford 2002
We describe the first lattice determination of the strong coupling constant with 3 flavors of dynamical quarks. The method follows previous analyses in using a perturbative expansion for the plaquette and Upsilon spectroscopy to set the scale. Using dynamical configurations from the MILC collaboration with 2+1 flavors of dynamical quarks we are able to avoid previous problems of having to extrapolate to 3 light flavors from 0 and 2. Our results agree with our previous work: alpha_s_MSbar(M_Z) = 0.121(3).
We present results by the ALPHA collaboration for the $Lambda$-parameter in 3-flavour QCD and the strong coupling constant at the electroweak scale, $alpha_s(m_Z)$, in terms of hadronic quantities computed on the CLS gauge configurations. The first p art of this proceedings contribution contains a review of published material cite{Brida:2016flw,DallaBrida:2016kgh} and yields the $Lambda$-parameter in units of a low energy scale, $1/L_{rm had}$. We then discuss how to determine this scale in physical units from experimental data for the pion and kaon decay constants. We obtain $Lambda_{overline{rm MS}}^{(3)} = 332(14)$ MeV which translates to $alpha_s(M_Z)=0.1179(10)(2)$ using perturbation theory to match between 3-, 4- and 5-flavour QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا