ﻻ يوجد ملخص باللغة العربية
The electronic band structure of crystals is generally influenced by the periodic arrangement of their constituent atoms. Specifically, the emerging two-dimensional (2D) layered structures have shown different band structures with respect to their stacking configurations. Here, based on first-principles density-functional theory calculations, we demonstrate that the band structure of the recently synthesized 2D Ca$_2$N electride changes little for the stacking sequence as well as the lateral interlayer shift. This intriguing invariance of band structure with respect to geometrical variations can be attributed to a complete screening of [Ca$_2$N]$^{+}$ cationic layers by anionic excess electrons delocalized between the cationic layers. The resulting weak interactions between 2D dressed cationic layers give rise to not only a shallow potential barrier for bilayer sliding but also an electron-doping facilitated shear exfoliation. Our findings open a route for exploration of the peculiar geometry-insensitive electronic properties in 2D electride materials, which will be useful for future thermally stable electronic applications.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener
We search for novel two-dimensional materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robus
The metal diborides are a class of ceramic materials with crystal structures consisting of hexagonal sheets of boron atoms alternating with planes of metal atoms held together with mixed character ionic/covalent bonds. Many of the metal diborides are
Two-dimensional (2D) electrides are a new concept material in which anionic electrons are confined in the interlayer space between positively charged layers. We have performed angle-resolved photoemission spectroscopy measurements on Y$_2$C, which is
The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material itself, or by environmental screening from the surrounding medium. The physical proper