ﻻ يوجد ملخص باللغة العربية
By performing high-throughput calculations using density functional theory combined with a semiempirical van der Waals dispersion correction, we screen 97 direct- and 253 indirect-gap two dimensional nonmagnetic semiconductors from near 1000 monolayers according to the energetic, thermodynamic, mechanical and dynamic stability criterions. We present the calculated results including lattice constants, formation energy, Youngs modulus, Poissons ratio, shear modulus, band gap, band structure, ionization energy and electron affinity for all the candidates satisfying our criteria.
We search for novel two-dimensional materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robus
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B
We analyze the low-energy properties of two-dimensional direct-gap semiconductors, such as for example the transition-metal dichalcogenides MoS$_2$, WS$_2$, and their diselenide analogues MoSe$_2$, WSe$_2$, etc., which are currently intensively inves
We have performed a computational screening of topological two-dimensional (2D) materials from the Computational 2D Materials Database (C2DB) employing density functional theory. A full textit{ab initio} scheme for calculating hybrid Wannier function
Electrical contact resistance to two-dimensional (2D) semiconductors such as monolayer MoS_{2} is a key bottleneck in scaling the 2D field effect transistors (FETs). The 2D semiconductor in contact with three-dimensional metal creates unique current