ﻻ يوجد ملخص باللغة العربية
The repetition rate of a Kerr comb comprising a single soliton in an anomalous dispersion silicon nitride microcavity is measured as a function of pump frequency tuning. The contributions from the Raman soliton self-frequency shift (SSFS) and from thermal effects are evaluated both experimentally and theoretically; the SSFS is found to dominate the changes in repetition rate. The relationship between the changes in repetition rate and pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato-Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to ~50 fs.
We demonstrate the generation of counter-rotating cavity solitons in a silicon nitride microresonator using a fixed, single-frequency laser. We demonstrate a dual 3-soliton state with a difference in the repetition rates of the soliton trains that ca
The recent discovery of dissipative Kerr solitons in microresonators has facilitated the development of fully coherent, chip-scale frequency combs. In addition, dark soliton pulses have been observed in microresonators in the normal dispersion regime
We present the first direct observation of the bound state of multiple dissipative optical solitons in which bond length and bond strength can be individually controlled in a broad range in a regular manner. We have observed experimentally a new type
Fast-responding detector arrays are commonly used for imaging rapidly-changing scenes. Besides array detectors, a single-pixel detector combined with a broadband optical spectrum can also be used for rapid imaging by mapping the spectrum into a spati
Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantl