ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremely elastic soliton crystals generated in a passively mode-locked tunable high-repetition-rate fiber laser

115   0   0.0 ( 0 )
 نشر من قبل Alexey Andrianov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first direct observation of the bound state of multiple dissipative optical solitons in which bond length and bond strength can be individually controlled in a broad range in a regular manner. We have observed experimentally a new type of stable and extremely elastic soliton crystals that can be stretched and compressed many times conserving their structure by adjusting the bond properties in real time in a specially designed passively mode-locked fiber laser incorporating highly asymmetric tunable Mach-Zehnder interferometer. The temporal structure and dynamics of the generated soliton crystals have been studied using an asynchronous optical sampling system with picosecond resolution. We demonstrated that stable and robust soliton crystal can be formed by two types of primitive structures: single dissipative solitons, and(or) pairs of dissipative soliton and pulse with lower amplitude. Continuous stretching and compression of a soliton crystal with extraordinary high ratio of more than 30 has been demonstrated with a smallest recorded separation between pulses as low as 5 ps corresponding to an effective repetition frequency of 200 GHz. Collective pulse dynamics, including soliton crystal self-assembling, cracking and transformation of crystals comprising pulse pairs to the crystals of similar pulses has been observed experimentally.



قيم البحث

اقرأ أيضاً

Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide range (1570 nm - 1600nm) continuous wavelength tunable dissipative solitons could be formed in an erbium doped fiber laser mode locked with few layer graphene.
246 - L. M. Zhao , D. Y. Tang , 2009
We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is stro ng pulse stretching and compression along the cavity in the laser, the bound solitons observed have a fixed pulse separation, which is invariant to the pump strength change. Numerical simulation confirmed the experimental observations.
Cross phase modulation (XPM) could induce soliton trapping in nonlinear medium, which has been employed to achieve vector soliton, optical switching and optical analog of gravity-like potentials. These results are generally within the definition in H amilton system. Here, we report on the observation of a XPM-forced frequency-oscillating soliton (XFOS) whose wavelength exhibits redshift and blueshift periodically like dancing in a mode-locked fiber laser under moderate birefringence. XFOS consists of two orthogonally polarized components exhibiting simultaneous frequency oscillation driven by XPM and gain effect, which allows withstanding higher pulse energy. The pulse trapping is maintained by differentiating the frequency-shift rate. Numerical simulations agree very well with experimental results, revealing an idiosyncratic evolution dynamic for asymmetry pulses in nonlinear dissipative system and envisaging a technique to control pulse feature with preset pulse chirp. XFOS may exist generally in polarization-independent ultrafast lasers, which enriches soliton family and brings useful insights into nonlinear science and applications.
176 - D. Y. Tang , L. M. Zhao , B. Zhao 2009
We report results of numerical simulations on the multiple soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode-locked by using the nonlinear polarization rotation technique. We found numerically that the fo rmation of multiple solitons in the laser is caused by a peak power limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in the gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that the multi-soliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have similar mechanism.
We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be di rectly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا