ﻻ يوجد ملخص باللغة العربية
We present the first direct observation of the bound state of multiple dissipative optical solitons in which bond length and bond strength can be individually controlled in a broad range in a regular manner. We have observed experimentally a new type of stable and extremely elastic soliton crystals that can be stretched and compressed many times conserving their structure by adjusting the bond properties in real time in a specially designed passively mode-locked fiber laser incorporating highly asymmetric tunable Mach-Zehnder interferometer. The temporal structure and dynamics of the generated soliton crystals have been studied using an asynchronous optical sampling system with picosecond resolution. We demonstrated that stable and robust soliton crystal can be formed by two types of primitive structures: single dissipative solitons, and(or) pairs of dissipative soliton and pulse with lower amplitude. Continuous stretching and compression of a soliton crystal with extraordinary high ratio of more than 30 has been demonstrated with a smallest recorded separation between pulses as low as 5 ps corresponding to an effective repetition frequency of 200 GHz. Collective pulse dynamics, including soliton crystal self-assembling, cracking and transformation of crystals comprising pulse pairs to the crystals of similar pulses has been observed experimentally.
Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide
We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is stro
Cross phase modulation (XPM) could induce soliton trapping in nonlinear medium, which has been employed to achieve vector soliton, optical switching and optical analog of gravity-like potentials. These results are generally within the definition in H
We report results of numerical simulations on the multiple soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode-locked by using the nonlinear polarization rotation technique. We found numerically that the fo
We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be di