ﻻ يوجد ملخص باللغة العربية
This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast as a sum over partitions of the rapidities of the magnons. We then introduce a non-perturbative framework, called the hexagon approach, and explain how one can use the symmetries (i.e. superconformal and gauge symmetries) and integrability to determine the structure constants. This article is based on the lectures given in Les Houches Summer School Integrability: From statistical systems to gauge theory in June 2016.
We introduce a nonperturbative approach to correlation functions of two determinant operators and one non-protected single-trace operator in planar N=4 supersymmetric Yang-Mills theory. Based on the gauge/string duality, we propose that they correspo
We consider N = 4 Yang-Mills theory on a flat four-torus with the R-symmetry current coupled to a flat background connection. The partition function depends on the coupling constant of the theory, but when it is expanded in a power series in the R-sy
We study 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit Killing spinors. If the manifold admits at least two Killing spinors (Sasaki-Einstein manifolds) we are able to rewrite the supersymmetric theory in terms of a coho
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetri
Action of 4 dimensional N=4 supersymmetric Yang-Mills theory is written by employing the superfields in N=4 superspace which were used to prove the equivalence of its constraint equations and equations of motion. Integral forms of the extended supers