ترغب بنشر مسار تعليمي؟ اضغط هنا

Lectures on Three-point Functions in N=4 Supersymmetric Yang-Mills Theory

86   0   0.0 ( 0 )
 نشر من قبل Shota Komatsu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shota Komatsu




اسأل ChatGPT حول البحث

This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast as a sum over partitions of the rapidities of the magnons. We then introduce a non-perturbative framework, called the hexagon approach, and explain how one can use the symmetries (i.e. superconformal and gauge symmetries) and integrability to determine the structure constants. This article is based on the lectures given in Les Houches Summer School Integrability: From statistical systems to gauge theory in June 2016.



قيم البحث

اقرأ أيضاً

We introduce a nonperturbative approach to correlation functions of two determinant operators and one non-protected single-trace operator in planar N=4 supersymmetric Yang-Mills theory. Based on the gauge/string duality, we propose that they correspo nd to overlaps on the string worldsheet between an integrable boundary state and a state dual to the single-trace operator. We determine the boundary state using symmetry and integrability of the dual superstring sigma model, and write down expressions for the correlators at finite coupling, which we conjecture to be valid for operators of arbitrary size. The proposal is put to test at weak coupling.
We consider N = 4 Yang-Mills theory on a flat four-torus with the R-symmetry current coupled to a flat background connection. The partition function depends on the coupling constant of the theory, but when it is expanded in a power series in the R-sy mmetry connection around the loci at which one of the supersymmetries is unbroken, the constant and linear terms are in fact independent of the coupling constant and can be computed at weak coupling for all non-trivial t Hooft fluxes. The case of a trivial t Hooft flux is difficult because of infrared problems, but the corresponding terms in the partition function are uniquely determined by S-duality.
We study 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit Killing spinors. If the manifold admits at least two Killing spinors (Sasaki-Einstein manifolds) we are able to rewrite the supersymmetric theory in terms of a coho mological complex. In principle this cohomological complex makes sense for any K-contact manifold. For the case of toric Sasaki-Einstein manifolds we derive explicitly the perturbative part of the partition function and speculate about the non-perturbative part. We also briefly discuss the case of 3-Sasaki manifolds and suggest a plausible form for the full non-perturbative answer.
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetri c Yang-Mills (SYM) actions are explicitly given in the cases of (2,2) and critical (4,0) AdS supersymmetries. The N=4 vector multiplets and the corresponding actions are then reduced to (2,0) AdS superspace, in which only N=2 supersymmetry is manifest. Using the off-shell structure of the N=4 vector multiplets, we provide complete N=4 SYM actions in (2,0) AdS superspace for all types of N=4 AdS supersymmetry. In the case of (4,0) AdS supersymmetry, which admits a Euclidean counterpart, the resulting N=2 action contains a Chern-Simons term proportional to q/r, where r is the radius of AdS_3 and q is the R-charge of a chiral scalar superfield. The R-charge is a linear inhomogeneous function of X, an expectation value of the N=4 Cotton superfield. Thus our results explain the mysterious structure of N=4 supersymmetric Yang-Mills theories on S^3 discovered in arXiv:1401.7952. In the case of (3,1) AdS supersymmetry, which has no Euclidean counterpart, the SYM action contains both a Chern-Simons term and a chiral mass-like term. In the case of (2,2) AdS supersymmetry, which admits a Euclidean counterpart, the SYM action has no Chern-Simons and chiral mass-like terms.
202 - O.F. Dayi , K. Ulker 2006
Action of 4 dimensional N=4 supersymmetric Yang-Mills theory is written by employing the superfields in N=4 superspace which were used to prove the equivalence of its constraint equations and equations of motion. Integral forms of the extended supers pace are engaged to collect all of the superfields in one master superfield. The proposed N=4 supersymmetric Yang-Mills action in extended superspace is shown to acquire a simple form in terms of the master superfield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا