ﻻ يوجد ملخص باللغة العربية
The finite-temperature behavior of gluon and of Faddeev-Popov-ghost propagators is investigated for pure SU(2) Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice simulations and Dyson-Schwinger equations. Possible limitations of these two approaches, such as finite-volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear thermodynamic transition seems to affect only the electric sector. These results imply in particular the confinement of transverse gluons at all temperatures and they can be understood inside the framework of the so-called Gribov-Zwanziger scenario of confinement.
Greens functions are a central element in the attempt to understand non-perturbative phenomena in Yang-Mills theory. Besides the propagators, 3-point Greens functions play a significant role, since they permit access to the running coupling constant
We study the pressure anisotropy in anisotropic finite-size systems in SU(3) Yang-Mills theory at nonzero temperature. Lattice simulations are performed on lattices with anisotropic spatial volumes with periodic boundary conditions. The energy-moment
Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills theory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions have a finite radius of convergence and thus are val
The authors of ref. Phys.Rev. D94 (2016) no.1, 014502 reported about a careful analysis of the impact of lattice artifacts on the $SU(3)$ gauge-field propagators. In particular, they found that the low-momentum behavior of the renormalized propagator
Euclidean two-point correlators of the energy-momentum tensor (EMT) in SU(3) gauge theory on the lattice are studied on the basis of the Yang-Mills gradient flow. The entropy density and the specific heat obtained from the two-point correlators are s