ﻻ يوجد ملخص باللغة العربية
In this article, we consider the preconditioned Hamiltonian Monte Carlo (pHMC) algorithm defined directly on an infinite-dimensional Hilbert space. In this context, and under a condition reminiscent of strong log-concavity of the target measure, we prove convergence bounds for adjusted pHMC in the standard 1-Wasserstein distance. The arguments rely on a synchronous coupling of two copies of pHMC, which is controlled by adapting elements from arXiv:1805.00452.
This paper continues our treatment of the Neutron Transport Equation (NTE) building on the work in [arXiv:1809.00827v2], [arXiv:1810.01779v4] and [arXiv:1901.00220v3], which describes the flux of neutrons through inhomogeneous fissile medium. Our aim
Practitioners wishing to experience the efficiency gains from using low discrepancy sequences need correct, well-written software. This article, based on our MCQMC 2020 tutorial, describes some of the better quasi-Monte Carlo (QMC) software available
Generative adversarial networks (GANs) have shown promising results when applied on partial differential equations and financial time series generation. We investigate if GANs can also be used to approximate one-dimensional Ito stochastic differentia
Monte Carlo planners can often return sub-optimal actions, even if they are guaranteed to converge in the limit of infinite samples. Known asymptotic regret bounds do not provide any way to measure confidence of a recommended action at the conclusion
In this article, we analyze Hamiltonian Monte Carlo (HMC) by placing it in the setting of Riemannian geometry using the Jacobi metric, so that each step corresponds to a geodesic on a suitable Riemannian manifold. We then combine the notion of curvat