ترغب بنشر مسار تعليمي؟ اضغط هنا

Coordinating Complementary Waveforms for Suppressing Range Sidelobes in a Doppler Band

69   0   0.0 ( 0 )
 نشر من قبل Ali Pezeshki
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general method for constructing radar transmit pulse trains and receive filters for which the radar point-spread function in delay and Doppler (radar cross-ambiguity function) is essentially free of range sidelobes inside a Doppler interval around the zero-Doppler axis. The transmit and receive pulse trains are constructed by coordinating the transmission of a pair of Golay complementary waveforms across time according to zeros and ones in a binary sequence $P$. In the receive pulse train filter, each waveform is weighted according to an element from another sequence $Q$. We show that the spectrum of essentially the product of $P$ and $Q$ sequences controls the size of the range sidelobes of the cross-ambiguity function. We annihilate the range sidelobes at low Doppler by designing the $(P,Q)$ pairs such that their products have high-order spectral nulls around zero Doppler. We specify the subspace, along with a basis, for such sequences, thereby providing a general way of constructing $(P,Q)$ pairs. At the same time, the signal-to-noise ratio (SNR) at the receiver output, for a single point target in white noise, depends only on the choice of $Q$. By jointly designing the transmit-receive sequences $(P,Q)$, we can maximize the output SNR subject to achieving a given order of the spectral null. The proposed $(P,Q)$ constructions can also be extended to sequences consisting of more than two complementary waveforms; this is done explicitly for a library of Golay complementary quads. Finally, we extend the construction of $(P,Q)$ pairs to multiple-input-multiple-output (MIMO) radar, by designing transmit-receive pairs of paraunitary waveform matrices whose matrix-valued cross-ambiguity function is essentially free of range sidelobes inside a Doppler interval around the zero-Doppler axis.



قيم البحث

اقرأ أيضاً

We describe a method of constructing a sequence of phase coded waveforms with perfect autocorrelation in the presence of Doppler shift. The constituent waveforms are Golay complementary pairs which have perfect autocorrelation at zero Doppler but are sensitive to nonzero Doppler shifts. We extend this construction to multiple dimensions, in particular to radar polarimetry, where the two dimensions are realized by orthogonal polarizations. Here we determine a sequence of two-by-two Alamouti matrices where the entries involve Golay pairs and for which the sum of the matrix-valued ambiguity functions vanish at small Doppler shifts. The Prouhet-Thue-Morse sequence plays a key role in the construction of Doppler resilient sequences of Golay pairs.
Optical communication systems, which operate at very high rates, are often limited by the sampling rate bottleneck. The optical wideband regime may exceed analog to digital converters (ADCs) front-end bandwidth. Multi-channel sampling approaches, suc h as multicoset or interleaved ADCs, have been proposed to sample the wideband signal using several channels. Each channel samples below the Nyquist rate such that the overall sampling rate is preserved. However, this scheme suffers from two practical limitations that make its implementation difficult. First, the inherent anti-aliasing filter of the samplers distorts the wideband signal. Second, it requires accurate time shifts on the order of the signals Nyquist rate, which are challenging to maintain. In this work, we propose an alternative multi-channel sampling scheme, the wideband demodulator for optical waveforms (WINDOW), based on analog RF demodulation, where each channel aliases the spectrum using a periodic mixing function before integration and sampling. We show that intentionally using the inherent ADC filter to perform integration increases the signal to noise ratio (SNR). We demonstrate both theoretically and through numerical experiments that our system outperforms multicoset in terms of signal recovery and symbol estimation in the presence of both thermal and quantization noise but is slightly less robust to timing jitter.
A new method to construct $q$-ary complementary sequence sets (CSSs) and complete complementary codes (CCCs) of size $N$ is proposed by using desired para-unitary (PU) matrices. The concept of seed PU matrices is introduced and a systematic approach on how to compute the explicit forms of the functions in constructed CSSs and CCCs from the seed PU matrices is given. A general form of these functions only depends on a basis of the functions from $Z_N$ to $Z_q$ and representatives in the equivalent class of Butson-type Hadamard (BH) matrices. Especially, the realization of Golay pairs from the our general form exactly coincides with the standard Golay pairs. The realization of ternary complementary sequences of size $3$ is first reported here. For the realization of the quaternary complementary sequences of size 4, almost all the sequences derived here are never reported before. Generalized seed PU matrices and the recursive constructions of the desired PU matrices are also studied, and a large number of new constructions of CSSs and CCCs are given accordingly. From the perspective of this paper, all the known results of CSSs and CCCs with explicit GBF form in the literature (except non-standard Golay pairs) are constructed from the Walsh matrices of order 2. This suggests that the proposed method with the BH matrices of higher orders will yield a large number of new CSSs and CCCs with the exponentially increasing number of the sequences of low peak-to-mean envelope power ratio.
A new method to construct $q$-ary complementary sequence (or array) sets (CSSs) and complete complementary codes (CCCs) of size $N$ is introduced in this paper. An algorithm on how to compute the explicit form of the functions in constructed CSS and CCC is also given. A general form of these functions only depends on a basis of functions from $Z_N$ to $Z_q$ and representatives in the equivalent class of Butson-type Hadamard matrices. Surprisingly, all the functions fill up a larger number of cosets of a linear code, compared with the existing constructions. From our general construction, its realization of $q$-ary Golay pairs exactly coincides with the standard Golay sequences. The realization of ternary complementary sequences of size $3$ is first reported here. For binary and quaternary complementary sequences of size 4, a general Boolean function form of these sequences is obtained. Most of these sequences are also new. Moreover, most of quaternary sequences cannot be generalized from binary sequences, which is different from known constructions. More importantly, both binary and quaternary sequences of size 4 constitute a large number of cosets of the linear code respectively.
Previously, we have presented a framework to use the para-unitary (PU) matrix-based approach for constructing new complementary sequence set (CSS), complete complementary code (CCC), complementary sequence array (CSA), and complete complementary arra y (CCA). In this paper, we introduce a new class of delay matrices for the PU construction. In this way, generalized Boolean functions (GBF) derived from PU matrix can be represented by an array of size $2times 2 times cdots times 2$. In addition, we introduce a new method to construct PU matrices using block matrices. With these two new ingredients, our new framework can construct an extremely large number of new CSA, CCA, CSS and CCC, and their respective GBFs can be also determined recursively. Furthermore, we can show that the known constructions of CSSs, proposed by Paterson and Schmidt respectively, the known CCCs based on Reed-muller codes are all special cases of this new framework. In addition, we are able to explain the bound of PMEPR of the sequences in the part of the open question, proposed in 2000 by Paterson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا