ﻻ يوجد ملخص باللغة العربية
We find a relationship between the dynamics of the Gaussian wave packet and the dynamics of the corresponding Gaussian Wigner function from the Hamiltonian/symplectic point of view. The main result states that the momentum map corresponding to the natural action of the symplectic group on the Siegel upper half space yields the covariance matrix of the corresponding Gaussian Wigner function. This fact, combined with Kostants coadjoint orbit covering theorem, establishes a symplectic/Poisson-geometric connection between the two dynamics. The Hamiltonian formulation naturally gives rise to corrections to the potential terms in the dynamics of both the wave packet and the Wigner function, thereby resulting in slightly different sets of equations from the conventional classical ones. We numerically investigate the effect of the correction term and demonstrate that it improves the accuracy of the dynamics as an approximation to the dynamics of expectation values of observables.
We show that the Siegel upper half space $Sigma_{d}$ is identified with the Marsden-Weinstein quotient obtained by symplectic reduction of the cotangent bundle $T^{*}mathbb{R}^{2d^{2}}$ with $mathsf{O}(2d)$-symmetry. The reduced symplectic form on $S
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noethers theorem. We consider two slightly different formulations of Gaussian
We study the Wigner caustic on shell of a Lagrangian submanifold L of affine symplectic space. We present the physical motivation for studying singularities of the Wigner caustic on shell and present its mathematical definition in terms of a generati
We deal with the reversible dynamics of coupled quantum and classical systems. Based on a recent proposal by the authors, we exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics in which both
We formulate the problem of determining the volume of the set of Gaussian physical states in the framework of information geometry. That is, by considering phase space probability distributions parametrized by the covariances and supplying this resul