ﻻ يوجد ملخص باللغة العربية
We show that the Siegel upper half space $Sigma_{d}$ is identified with the Marsden-Weinstein quotient obtained by symplectic reduction of the cotangent bundle $T^{*}mathbb{R}^{2d^{2}}$ with $mathsf{O}(2d)$-symmetry. The reduced symplectic form on $Sigma_{d}$ corresponding to the standard symplectic form on $T^{*}mathbb{R}^{2d^{2}}$ turns out to be a constant multiple of the symplectic form on $Sigma_{d}$ obtained by Siegel. Our motivation is to understand the geometry behind two different formulations of the Gaussian wave packet dynamics commonly used in semiclassical mechanics. Specifically, we show that the two formulations are related via the symplectic reduction.
We find a relationship between the dynamics of the Gaussian wave packet and the dynamics of the corresponding Gaussian Wigner function from the Hamiltonian/symplectic point of view. The main result states that the momentum map corresponding to the na
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t
We compute the semiclassical formulas for the partition functions obtained using two different Lagrangians: the Chern-Simons functional and the symplectic action functional.
We present a simple formula for the generating function for the polynomials in the $d$--dimensional semiclassical wave packets. We then use this formula to prove the associated Rodrigues formula.
We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noethers theorem. We consider two slightly different formulations of Gaussian