ﻻ يوجد ملخص باللغة العربية
The generalization of matrix product states (MPS) to continuous systems, as proposed in the breakthrough paper [F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 104, 190405(2010)], provides a powerful variational ansatz for the ground state of strongly interacting quantum field theories in one spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating an Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy minimization by gradient methods, and demonstrate its performance by applying it to the Lieb Liniger model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe a very significant computational speed-up, of more than two orders of magnitude, with respect to simulating an Euclidean time evolution. As a result, much larger cMPS bond dimension D can be reached (e.g. D = 256 with moderate computational resources) thus helping unlock the full potential of the cMPS representation for ground state studies.
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories
A generic method to investigate many-body continuous-variable systems is pedagogically presented. It is based on the notion of matrix product states (so-called MPS) and the algorithms thereof. The method is quite versatile and can be applied to a wid
We solve the mixing-demixing transition in repulsive one-dimensional bose-bose mixtures. This is done numerically by means of the continuous matrix product states variational ansatz. We show that the effective low-energy bosonization theory is able t
We quantify how well matrix product states approximate exact ground states of 1-D quantum spin systems as a function of the number of spins and the entropy of blocks of spins. We also investigate the convex set of local reduced density operators of t
While general quantum many-body systems require exponential resources to be simulated on a classical computer, systems of non-interacting fermions can be simulated exactly using polynomially scaling resources. Such systems may be of interest in their