ترغب بنشر مسار تعليمي؟ اضغط هنا

Something borrowed, something blue: The nature of blue metal-poor stars inferred from their colours and chemical abundances

93   0   0.0 ( 0 )
 نشر من قبل Camilla Juul Hansen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blue metal-poor stars (BMPs) are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts. Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator as to their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity, and lithium. Using a sample of 80 BMP stars (T>6300K), we find that 97% of the BMP binaries have V-Ks_0 < 1.08$pm0.03$, while BMP stars that are not binaries lie above this cut in 2/3 of the cases. This cut can help classify stars which lack radial velocities from follow-up observations. We trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high SN spectra. Based on their radial velocities, Li, alpha, and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li)$=2.38pm0.10$dex) while with A(Li)$=2.23pm0.07$dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using V-Ks colours with a fraction of single stars polluting the binary sample, but not vice versa.(Abridged)


قيم البحث

اقرأ أيضاً

Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are incorporated into gas and stars are necessary to piece together how the elements evolved. These include establishing chemical abundance trends, as set by metal-poor stars, comparing nucleosynthesis yield predictions with stellar abundance data, and theoretical modeling of chemical evolution. To aid these studies, we have collected chemical abundance measurements and other information such as stellar parameters, coordinates, magnitudes, and radial velocities, for extremely metal-poor stars from the literature. The database, JINAbase, contains 1658 unique stars, 60% of which have [Fe/H]<2.5. This information is stored in an SQL database, together with a user-friendly queryable web application (http://jinabase.pythonanywhere.com). Objects with unique chemical element signatures (e.g., r-process stars, s-process and CEMP stars) are labeled or can be classified as such. The web application enables fast selection of customized comparison samples from the literature for the aforementioned studies and many more. Using the multiple entries for three of the most well studied metal-poor stars, we evaluate systematic uncertainties of chemical abundances measurements. We provide a brief guide on the selection of chemical elements for model comparisons for non- spectroscopists who wish to learn about metal-poor stars and the details of chemical abundances measurements.
An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] = -2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant-branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). CNO abundance determinations offer clues to their formation sites. C, N, Sr, and Ba abundances (or limits) and 12C/13C ratios where possible are derived for a sample of 27 faint metal-poor stars for which the X-shooter spectra have sufficient S/N ratios. These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP sub-classes (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and three are CEMP-no, while the remaining seven are carbon-normal. For four CEMP stars, the sub-classification remains uncertain, and two of them may be pulsating AGB stars. The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful to identify stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-shooter spectra have thus proved to be valuable tools in the continued search for their origin. Abridged.
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
The nature of the first massive stars may be inferred by investigating the origin of the extremely metal-poor (EMP) stars, likely formed from the ejecta of one or a few previous massive stars. We investigate the rotational properties of early massive stars by comparing the abundance patterns of EMP stars with rotating massive stellar models. Low metallicity 20 $M_{odot}$ stellar models with initial rotation rates between 0 and $70~%$ of the critical velocity are computed. Explosions with strong fallback are assumed. The ejected material is considered to fit individually the abundance patterns of 272 EMP stars with $-4<$ [Fe/H] $<-3$. With increasing initial rotation, the [C/H], [N/H], [O/H], [Na/H], [Mg/H] and [Al/H] ratios in the massive star ejecta are gradually increased. Among the 272 EMP stars considered, $sim 40-50~%$ are consistent with our models. About $60 - 70~%$ of the CEMP star sample is reproduced against $sim 20 - 30~%$ for the C-normal EMP star sample. The CEMP stars are preferentially reproduced with a material coming from mid to fast rotating massive stars. The velocity distribution derived from the best massive star models increases from no rotation to fast rotation. The maximum is reached for massive stars having initial equatorial velocities of $sim 550 - 640$ km~s$^{-1}$. Although subject to significant uncertainties, these results suggest that the rotational mixing operating in between the H-burning shell and the He-burning core of early massive stars played an important role in the early chemical enrichment of the Universe. The comparison of the velocity distribution derived from the best massive star models with velocity distributions of nearby OB stars suggests a greater amount of massive fast rotators in the early Universe. This may have important consequences for reionization or integrated light from high redshift galaxies.
130 - Ian U. Roederer 2012
The elements germanium (Ge, Z=32), arsenic (As, Z=33), and selenium (Se, Z=34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, o nly the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 < [Fe/H] < -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا