ﻻ يوجد ملخص باللغة العربية
Blue metal-poor stars (BMPs) are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts. Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator as to their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity, and lithium. Using a sample of 80 BMP stars (T>6300K), we find that 97% of the BMP binaries have V-Ks_0 < 1.08$pm0.03$, while BMP stars that are not binaries lie above this cut in 2/3 of the cases. This cut can help classify stars which lack radial velocities from follow-up observations. We trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high SN spectra. Based on their radial velocities, Li, alpha, and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li)$=2.38pm0.10$dex) while with A(Li)$=2.23pm0.07$dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using V-Ks colours with a fraction of single stars polluting the binary sample, but not vice versa.(Abridged)
Reconstructing the chemical evolution of the Milky Way is crucial for understanding the formation of stars, planets, and galaxies throughout cosmic time. Different studies associated with element production in the early universe and how elements are
An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] = -2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of
The nature of the first massive stars may be inferred by investigating the origin of the extremely metal-poor (EMP) stars, likely formed from the ejecta of one or a few previous massive stars. We investigate the rotational properties of early massive
The elements germanium (Ge, Z=32), arsenic (As, Z=33), and selenium (Se, Z=34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, o