ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring the velocity of early massive stars from the abundances of extremely metal-poor stars

198   0   0.0 ( 0 )
 نشر من قبل Arthur Choplin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the first massive stars may be inferred by investigating the origin of the extremely metal-poor (EMP) stars, likely formed from the ejecta of one or a few previous massive stars. We investigate the rotational properties of early massive stars by comparing the abundance patterns of EMP stars with rotating massive stellar models. Low metallicity 20 $M_{odot}$ stellar models with initial rotation rates between 0 and $70~%$ of the critical velocity are computed. Explosions with strong fallback are assumed. The ejected material is considered to fit individually the abundance patterns of 272 EMP stars with $-4<$ [Fe/H] $<-3$. With increasing initial rotation, the [C/H], [N/H], [O/H], [Na/H], [Mg/H] and [Al/H] ratios in the massive star ejecta are gradually increased. Among the 272 EMP stars considered, $sim 40-50~%$ are consistent with our models. About $60 - 70~%$ of the CEMP star sample is reproduced against $sim 20 - 30~%$ for the C-normal EMP star sample. The CEMP stars are preferentially reproduced with a material coming from mid to fast rotating massive stars. The velocity distribution derived from the best massive star models increases from no rotation to fast rotation. The maximum is reached for massive stars having initial equatorial velocities of $sim 550 - 640$ km~s$^{-1}$. Although subject to significant uncertainties, these results suggest that the rotational mixing operating in between the H-burning shell and the He-burning core of early massive stars played an important role in the early chemical enrichment of the Universe. The comparison of the velocity distribution derived from the best massive star models with velocity distributions of nearby OB stars suggests a greater amount of massive fast rotators in the early Universe. This may have important consequences for reionization or integrated light from high redshift galaxies.

قيم البحث

اقرأ أيضاً

130 - Monique Spite 2010
Sulfur is important: the site of its formation is uncertain, and at very low metallicity the trend of [S/Fe] against [Fe/H] is controversial. Below [Fe/H]=-2.0, [S/Fe] remains constant or it decreases with [Fe/H], depending on the author and the mult iplet used in the analysis. Moreover, although sulfur is not significantly bound in dust grains in the ISM, it seems to behave differently in DLAs and in old metal-poor stars. We aim to determine precise S abundance in a sample of extremely metal-poor stars taking into account NLTE and 3D effects. NLTE profiles of the lines of the multiplet 1 of SI have been computed using a new model atom for S. We find sulfur in EMP stars to behave like the other alpha-elements, with [S/Fe] remaining approximately constant for [Fe/H]<-3. However, [S/Mg] seems to decrease slightly as a function of [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are best matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as found also in DLAs. We obtain an upper limit on the abundance of sulfur, [S/Fe] < +0.5, for the ultra metal-poor star CS 22949-037. This, along with a previous reported measurement of zinc, argues against the conjecture that the light-element abundances pattern in this star, and, by analogy, the hyper metal-poor stars HE 0107-5240 and HE 1327-2326, are due to dust depletion.
259 - L. Sbordone 2012
We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progr essive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The meltdown of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.
181 - Arthur Choplin 2019
The study of the long-dead early generations of massive stars is crucial in order to obtain a complete picture of the chemical evolution of the Universe, hence the origin of the elements. The nature of these stars can be inferred indirectly by invest igating the origin of low-mass metal-poor stars observed in our Galaxy, some of which are almost as old as the Universe. The peculiar extremely iron-poor Carbon-Enhanced Metal-Poor (CEMP) stars, whose precise origin is still debated, are thought to have formed with the material ejected by only one or very few previous massive stars. The main aim of this thesis is to explore the physics and the nucleosynthesis of the early generations of massive stars. It is achieved by combining stellar evolution modeling including rotation and full nucleosynthesis with observations of CEMP stars.
141 - Luca Sbordone 2012
We report on the result of an ongoing campaign to determine chemical abundances in extremely metal poor (EMP) turn-off (TO) stars selected from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This contribution focuses principally on the l argest part of the sample (18 stars out of 29), observed with UVES@VLT and analyzed by means of the automatic abundance analysis code MyGIsFOS to derive atmosphere parameters and detailed compositions. The most significant findings include i) the detection of a C-rich, strongly Mg-enhanced star ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]>-0.4); iii) a group of Ni-rich stars ([Ni/Fe]>0.2). Li is measured in twelve stars, while for three upper limits are derived.
After the Big Bang nucleosynthesis, the first heavy element enrichment in the Universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abun dance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well-reproduce individually the abundance patterns of 48 such metal-poor stars as [Fe/H] $mathrel{rlap{lower 4pt hbox{$sim$}}raise 1pt hbox {$<$}}-3.5$. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C+N)/Fe] and [(C+N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: The distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the resent day SNe but shows an extended tail down to $sim10^{-2}-10^{-5}M_odot$, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present day stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا