ﻻ يوجد ملخص باللغة العربية
An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] = -2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant-branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). CNO abundance determinations offer clues to their formation sites. C, N, Sr, and Ba abundances (or limits) and 12C/13C ratios where possible are derived for a sample of 27 faint metal-poor stars for which the X-shooter spectra have sufficient S/N ratios. These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP sub-classes (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and three are CEMP-no, while the remaining seven are carbon-normal. For four CEMP stars, the sub-classification remains uncertain, and two of them may be pulsating AGB stars. The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful to identify stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-shooter spectra have thus proved to be valuable tools in the continued search for their origin. Abridged.
We present a novel scenario for the formation of carbon-enhanced metal-poor (CEMP) stars. Carbon enhancement at low stellar metallicities is usually considered a consequence of faint or other exotic supernovae. An analytical estimate of cooling times
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f
We model the evolution of the abundances of light elements in carbon-enhanced metal-poor (CEMP) stars, under the assumption that such stars are formed by mass transfer in a binary system. We have modelled the accretion of material ejected by an asymp
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate