ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundances of carbon-enhanced metal-poor stars as constraints on their formation

158   0   0.0 ( 0 )
 نشر من قبل Camilla Juul Hansen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] = -2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant-branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). CNO abundance determinations offer clues to their formation sites. C, N, Sr, and Ba abundances (or limits) and 12C/13C ratios where possible are derived for a sample of 27 faint metal-poor stars for which the X-shooter spectra have sufficient S/N ratios. These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP sub-classes (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and three are CEMP-no, while the remaining seven are carbon-normal. For four CEMP stars, the sub-classification remains uncertain, and two of them may be pulsating AGB stars. The derived stellar abundances trace the formation processes and sites of our sample stars. The [C/N] abundance ratio is useful to identify stars with chemical compositions unaffected by internal mixing, and the [Sr/Ba] abundance ratio allows us to distinguish between CEMP-s stars with AGB progenitors and the CEMP-no stars. Suggested formation sites for the latter include faint supernovae with mixing and fallback and/or primordial, rapidly-rotating, massive stars (spinstars). X-shooter spectra have thus proved to be valuable tools in the continued search for their origin. Abridged.

قيم البحث

اقرأ أيضاً

We present a novel scenario for the formation of carbon-enhanced metal-poor (CEMP) stars. Carbon enhancement at low stellar metallicities is usually considered a consequence of faint or other exotic supernovae. An analytical estimate of cooling times in low-metallicity gas demonstrates a natural bias, which favours the formation of CEMP stars as a consequence of inhomogeneous metal mixing: carbon-rich gas has a shorter cooling time and can form stars prior to a potential nearby pocket of carbon-normal gas, in which star formation is then suppressed due to energetic photons from the carbon-enhanced protostars. We demonstrate that this scenario provides a natural formation mechanism for CEMP stars from carbon-normal supernovae, if inhomogeneous metal mixing provides carbonicity differences of at least one order of magnitude separated by >10pc. In our fiducial (optimistic) model, 8% (83%) of observed CEMP-no stars ([Ba/Fe]<0) can be explained by this formation channel. This new scenario may change our understanding of the first supernovae and thereby our concept of the first stars. Future 3D simulations are required to assess the likelihood of this mechanism to occur in typical high-redshift galaxies.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
We model the evolution of the abundances of light elements in carbon-enhanced metal-poor (CEMP) stars, under the assumption that such stars are formed by mass transfer in a binary system. We have modelled the accretion of material ejected by an asymp totic giant branch star on to the surface of a companion star. We then examine three different scenarios: one in which the material is mixed only by convective processes, one in which thermohaline mixing is present and a third in which both thermohaline mixing and gravitational settling are taken in to account. The results of these runs are compared to light element abundance measurements in CEMP stars (primarily CEMP-s stars, which are rich in $s$-processes elements and likely to have formed by mass transfer from an AGB star), focusing on the elements Li, F, Na and Mg. None of the elements is able to provide a conclusive picture of the extent of mixing of accreted material. We confirm that lithium can only be preserved if little mixing takes place. The bulk of the sodium observations suggest that accreted material is effectively mixed but there are also several highly Na and Mg-rich objects that can only be explained if the accreted material is unmixed. We suggest that the available sodium data may hint that extra mixing is taking place on the giant branch, though we caution that the data is sparse.
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan cement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] lesssim -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate rial from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars which is not seen. We investigate whether the observed CEMP and NEMP to extremely metal-poor (EMP) ratios can be explained without invoking a change in the initial mass function. We confirm earlier findings that with current detailed TPAGB models the large observed CEMP fraction cannot be accounted for. We find that efficient third dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at least a partial explanation to the large observed CEMP fraction while remaining consistent with the small observed NEMP fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا