ﻻ يوجد ملخص باللغة العربية
We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using 6 years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are dark-matter-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~$2 sigma$ local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance $<1 sigma$). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. 2015. The observed constraints on the dark matter annihilation cross section are statistically consistent with the background expectation, improving by a factor of ~2 for large dark matter masses ($m_{{rm DM},b bar b} gtrsim 1$ TeV and $m_{{rm DM},tau^{+}tau^{-}} gtrsim 70$ GeV) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits.
Dwarf spheroidal galaxies have a large mass to light ratio and low astrophysical background, and are therefore considered one of the most promising targets for dark matter searches in the gamma-ray band. By applying a joint likelihood analysis, the p
The Fermi LAT collaboration has recently presented constraints on the gamma-ray signal from annihilating dark matter using separate analyses of a number of dwarf spheroidal galaxies. Since the expected annihilation signal has the same physical proper
Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission
We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio i
Dwarf spheroidal galaxy satellites of the Milky Way are prime targets for indirect detection of dark matter with gamma rays due to their proximity, high dark matter content and absence of non-thermal emission processes. Recently, the Dark Energy Surv