ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for dark matter signals towards a selection of recently-detected DES dwarf galaxy satellites of the Milky Way with H.E.S.S

128   0   0.0 ( 0 )
 نشر من قبل Lucia Rinchiuso
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf spheroidal galaxy satellites of the Milky Way are prime targets for indirect detection of dark matter with gamma rays due to their proximity, high dark matter content and absence of non-thermal emission processes. Recently, the Dark Energy Survey (DES) revealed the existence of new ultra-faint dwarf spheroidal galaxies in the southern-hemisphere sky, therefore ideally located for ground-based observations with the imaging atmospheric Cherenkov telescope array H.E.S.S. We present a search for very-high-energy ($Egtrsim100$ GeV) gamma-ray emission using H.E.S.S. observations carried out recently towards Reticulum II, Tucana II, Tucana III, Tucana IV and Grus II satellites. No significant very-high-energy gamma-ray excess is found from the observations on any individual object nor in the combined analysis of all the datasets. Using the most recent modeling of the dark matter distribution in the dwarf galaxy halo, we compute for the first time on DES satellites individual and combined constraints from Cherenkov telescope observations on the annihilation cross section of dark matter particles in the form of Weakly Interacting Massive Particles. The combined 95% C.L. observed upper limits reach $langle sigma v rangle simeq 1 times 10^{-23}$ cm$^3$s$^{-1}$ in the $W^+W^-$ channel and $4 times 10^{-26}$ cm$^3$s$^{-1}$ in the $gammagamma$ channels for a dark matter mass of 1.5 TeV. The H.E.S.S. constraints well complement the results from Fermi-LAT, HAWC, MAGIC and VERITAS and are currently the most stringent in the $gammagamma$ channels in the multi-GeV/multi-TeV mass range.

قيم البحث

اقرأ أيضاً

We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using 6 years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are dark-matter-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~$2 sigma$ local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance $<1 sigma$). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. 2015. The observed constraints on the dark matter annihilation cross section are statistically consistent with the background expectation, improving by a factor of ~2 for large dark matter masses ($m_{{rm DM},b bar b} gtrsim 1$ TeV and $m_{{rm DM},tau^{+}tau^{-}} gtrsim 70$ GeV) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits.
In the indirect dark matter (DM) detection framework, the DM particles would produce some signals by self-annihilating and creating standard model products such as gamma rays, which might be detected by ground-based telescopes. Dwarf irregular galaxi es represent promising targets for the search for DM as they are assumed to be dark matter dominated systems at all radii. These dwarf irregular galaxies are rotationally supported with relatively simple kinematics which lead to small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. telescopes observed the irregular dwarf galaxy Wolf-Lundmark-Melotte (WLM) for a live time of 19 hours. These observations are the very first ones made by an imaging atmospheric Cherenkov telescope toward this kind of object. We search for a DM signal looking for an excess of gamma rays over the background in the direction of the WLM galaxy. We present the first results obtained on the velocity weighted cross section for DM self-annihilation as a function of DM particle mass.
The Fornax galaxy cluster was observed with the High Energy Stereoscopic System (H.E.S.S.) for a total live time of 14.5 hours, searching for very-high-energy (VHE, E>100 GeV) gamma-rays from dark matter (DM) annihilation. No significant signal was f ound in searches for point-like and extended emissions. Using several models of the DM density distribution, upper limits on the DM velocity-weighted annihilation cross-section <sigma v> as a function of the DM particle mass are derived. Constraints are derived for different DM particle models, such as those arising from Kaluza-Klein and supersymmetric models. Various annihilation final states are considered. Possible enhancements of the DM annihilation gamma-ray flux, due to DM substructures of the DM host halo, or from the Sommerfeld effect, are studied. Additional gamma-ray contributions from internal bremsstrahlung and inverse Compton radiation are also discussed. For a DM particle mass of 1 TeV, the exclusion limits at 95% of confidence level reach values of <sigma v> ~ 10^-23cm^3s^-1, depending on the DM particle model and halo properties. Additional contribution from DM substructures can improve the upper limits on <sigma v> by more than two orders of magnitude. At masses around 4.5 TeV, the enhancement by substructures and the Sommerfeld resonance effect results in a velocity-weighted annihilation cross-section upper limit at the level of <sigma v> ~ 10^-26cm^3s^-1.
We search for an indirect signal of dark matter through very high-energy gamma rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as gamma rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the H.E.S.S. five-telescope array observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation as a function of the dark matter particle mass for various continuum channels as well as the prompt gamma-gamma emission. For the $tau^+tau^-$ channel the limits reach a $langle sigma v rangle$ value of about $4times 10^{-22}$ cm3s-1 for a dark matter particle mass of 1 TeV. For the prompt gamma-gamma channel, the upper limit reaches a $langle sigma v rangle$ value of about $5 times10^{-24}$ cm3s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200 with respect to previous results for the dwarf irregular galaxies for TeV dark matter search.
Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for v ery-high-energy (VHE, $Egeq 100$ GeV) gamma-ray emission using H.E.S.S. observations carried out from a thorough selection of unidentified Fermi-LAT Objects (UFOs) as dark matter subhalo candidates. Provided that the dark matter mass is higher than a few hundred GeV, the emission of the UFOs can be well described by dark matter annihilation models. No significant VHE gamma-ray emission is detected in any UFO dataset nor in their combination. We, therefore, derive constraints on the product of the velocity-weighted annihilation cross-section $langle sigma vrangle$ by the $J$-factor on dark matter models describing the UFO emissions. Upper limits at 95% confidence level are derived on $langle sigma vrangle J$ in $W^+W^-$ and $tau^+tau^-$ annihilation channels for the TeV dark matter particles. Focusing on thermal WIMPs, strong constraints on the $J$-factors are obtained from H.E.S.S. observations. Adopting model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution function for Milky Way (MW)-sized galaxies, only $lesssim 0.3$ TeV mass dark matter models marginally allow to explain observed UFO emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا