ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Dark Matter Satellites using the FERMI-LAT

75   0   0.0 ( 0 )
 نشر من قبل Alex Drlica-Wagner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the $b bar b$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $b bar b$ channel.

قيم البحث

اقرأ أيضاً

60 - Maja Llena Garde 2011
The Fermi LAT collaboration has recently presented constraints on the gamma-ray signal from annihilating dark matter using separate analyses of a number of dwarf spheroidal galaxies. Since the expected annihilation signal has the same physical proper ties regardless of the target (except for a normalization scale), it is possible to enhance the constraining power using a combined analysis, the initial results of which will be presented here.
We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using 6 years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are dark-matter-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~$2 sigma$ local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance $<1 sigma$). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. 2015. The observed constraints on the dark matter annihilation cross section are statistically consistent with the background expectation, improving by a factor of ~2 for large dark matter masses ($m_{{rm DM},b bar b} gtrsim 1$ TeV and $m_{{rm DM},tau^{+}tau^{-}} gtrsim 70$ GeV) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits.
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray back ground from 4.8 GeV to 264 GeV obtained from two years of Fermi Large Area Telescope data integrated over most of the sky. We give cross section upper limits and decay lifetime lower limits for dark matter models that produce gamma-ray lines or contribute to the diffuse spectrum, including models proposed as explanations of the PAMELA and Fermi cosmic-ray data.
Dark matter (DM) particle annihilation or decay can produce monochromatic $gamma$-rays readily distinguishable from astrophysical sources. $gamma$-ray line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a $gamma$-ray line analysis, and integrated over most of the sky. We obtain $gamma$-ray line flux upper limits in the range $0.6-4.5times 10^{-9}mathrm{cm}^{-2}mathrm{s}^{-1}$, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.
Cosmological $N$-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma-rays and be eventually detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-LAT Objects (UFOs) to identify them as possible TeV-scale dark matter subhalo candidates. We search for very-high-energy (E $gtrsim$ 100 GeV) gamma-ray emissions using H.E.S.S. observations towards four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any dataset of the four observed UFOs nor in the combined UFO dataset, strong constraints are derived on the product of the velocity-weighted annihilation cross section $langle sigma v rangle$ by the $J$-factor for the dark matter models. The 95% C.L. observed upper limits derived from combined H.E.S.S. observations reach $langle sigma v rangle J$ values of 3.7$times$10$^{-5}$ and 8.1$times$10$^{-6}$ GeV$^2$cm$^{-2}$s$^{-1}$ in the $W^+W^-$ and $tau^+tau^-$ channels, respectively, for a 1 TeV dark matter mass. Focusing on thermal WIMPs, the H.E.S.S. constraints restrict the $J$-factors to lie in the range 6.1$times$10$^{19}$ - 2.0$times$10$^{21}$ GeV$^2$cm$^{-5}$, and the masses to lie between 0.2 and 6 TeV in the $W^+W^-$ channel. For the $tau^+tau^-$ channel, the $J$-factors lie in the range 7.0$times$10$^{19}$ - 7.1$times$10$^{20}$ GeV$^2$cm$^{-5}$ and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution for Milky Way-sized galaxies, the dark matter models with masses greater than 0.3 TeV for the UFO emissions can be ruled out at high confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا