ﻻ يوجد ملخص باللغة العربية
Numerical simulations based on the Lambda-CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the $b bar b$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $b bar b$ channel.
The Fermi LAT collaboration has recently presented constraints on the gamma-ray signal from annihilating dark matter using separate analyses of a number of dwarf spheroidal galaxies. Since the expected annihilation signal has the same physical proper
We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using 6 years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically
Dark matter particle annihilation or decay can produce monochromatic gamma-ray lines and contribute to the diffuse gamma-ray background. Flux upper limits are presented for gamma-ray spectral lines from 7 to 200 GeV and for the diffuse gamma-ray back
Dark matter (DM) particle annihilation or decay can produce monochromatic $gamma$-rays readily distinguishable from astrophysical sources. $gamma$-ray line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data
Cosmological $N$-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma-rays and be eventually detected in gamma-ray surveys as unidentified sources. We performed