ترغب بنشر مسار تعليمي؟ اضغط هنا

The long flow to freedom

64   0   0.0 ( 0 )
 نشر من قبل Brian Willett
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional field theories do not have a moduli space of vacua. Instead, it is common that their low-energy behavior is a sigma model with a target space. When this target space is compact its renormalization group flow is standard. When it is non-compact the continuous spectrum of operators can change the qualitative behavior. Here we discuss two-dimensional gauge theories with N=(2,2) supersymmetry. We focus on two specific theories, for which we argue that they flow to free chiral multiplets at low energies: the U(1) gauge theory with one flavor (two chiral superfields with charges plus and minus one) and a non-zero Fayet-Iliopoulos term, and pure SU(N) gauge theories. We argue that the renormalization group flow of these theories has an interesting order of limits issue. Holding the position on the target space fixed, the space flattens out under the renormalization group. On the other hand, if we first go to infinity on the target space and then perform the renormalization group, we always have a non-trivial space, e.g. a cone with a deficit angle. We explain how to interpret low-energy dualities between theories with non-compact target spaces. We expect a similar qualitative behavior also for other non-compact sigma models, even when they do not flow to free theories.

قيم البحث

اقرأ أيضاً

In a recent paper we considered the type 0 string theories, obtained from the ten-dimensional closed NSR string by a GSO projection which excludes space-time fermions, and studied the low-energy dynamics of N coincident D-branes. This led us to conje cture that the four-dimensional SU(N) gauge theory coupled to 6 adjoint massless scalars is dual to a background of type 0 theory carrying N units of R-R 5-form flux and involving a tachyon condensate. The tachyon background leads to a ``soft breaking of conformal invariance, and we derived the corresponding renormalization group equation. Minahan has subsequently found its asymptotic solution for weak coupling and showed that the coupling exhibits logarithmic flow, as expected from the asymptotic freedom of the dual gauge theory. We study this solution in more detail and identify the effect of the 2-loop beta function. We also demonstrate the existence of a fixed point at infinite coupling. Just like the fixed point at zero coupling, it is characterized by the AdS_5times S^5 Einstein frame metric. We argue that there is a RG trajectory extending all the way from the zero coupling fixed point in the UV to the infinite coupling fixed point in the IR.
We study four-dimensional gauge theories coupled to fermions in the fundamental and meson-like scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the regime where asymptotic freedom is absent, we determine all interacting fixed points using perturbation theory up to three loop in the gauge and two loop in the Yukawa and quartic couplings. We find that the conformal window of ultraviolet fixed points is narrowed-down by finite-$N$ corrections beyond the Veneziano limit. We also find a new infrared fixed point whose main features such as scaling exponents, UV-IR connecting trajectories, and phase diagram are provided. Both fixed points collide upon varying the number of fermion flavours $N_{rm f}$, and conformality is lost through a saddle-node bifurcation. We further revisit the prospect for ultraviolet fixed points in the large $N_{rm f}$ limit where matter field fluctuations dominate. Unlike at weak coupling, we do not find clear evidence for new scaling solutions even in the presence of scalar and Yukawa couplings.
88 - Aman D. Sood 2011
Here we aim to understand the effect of isospin dependence of cross section and Coulomb repulsion on the counterbalancing of collective flow
We study two-dimensional weighted ${mathcal N}=2$ supersymmetric $mathbb{CP}$ models with the goal of exploring their infrared (IR) limit. $mathbb{WCP}(N,widetilde{N})$ are simplifi
When two spacetimes are stitched across a null-shell placed at the horizon of a black hole BMS-supertranslation like soldering freedom arises if one demands the induced metric on the horizon shell should remain invariant under the translations genera ted by the null generators of the shell. We revisit this phenomenon at the horizon of rotating shells and obtain BMS like symmetries. We further show that superrotation like soldering symmetries in the form of conformal isometries can emerge whenever the degenerate metric of any null hypersurface admits a dependency on null (degenerate direction) coordinate. This kind of conformal isometry can also appear for a null surface situated very close to the horizon of black holes. We also study the intrinsic properties of different kinds of horizon shells considered in this note.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا