ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Freedom and Infrared Behavior in the Type 0 String Approach to Gauge Theory

196   0   0.0 ( 0 )
 نشر من قبل Igor Klebanov
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper we considered the type 0 string theories, obtained from the ten-dimensional closed NSR string by a GSO projection which excludes space-time fermions, and studied the low-energy dynamics of N coincident D-branes. This led us to conjecture that the four-dimensional SU(N) gauge theory coupled to 6 adjoint massless scalars is dual to a background of type 0 theory carrying N units of R-R 5-form flux and involving a tachyon condensate. The tachyon background leads to a ``soft breaking of conformal invariance, and we derived the corresponding renormalization group equation. Minahan has subsequently found its asymptotic solution for weak coupling and showed that the coupling exhibits logarithmic flow, as expected from the asymptotic freedom of the dual gauge theory. We study this solution in more detail and identify the effect of the 2-loop beta function. We also demonstrate the existence of a fixed point at infinite coupling. Just like the fixed point at zero coupling, it is characterized by the AdS_5times S^5 Einstein frame metric. We argue that there is a RG trajectory extending all the way from the zero coupling fixed point in the UV to the infinite coupling fixed point in the IR.

قيم البحث

اقرأ أيضاً

A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.
120 - Maria Gomez-Rocha 2016
We derive asymptotic freedom and the $SU(3)$ Yang-Mills $beta$-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size $s$ is introduced. Effective particles in the Foc k space build eigenstates of the effective Hamiltonian $H_s$, which is a matrix written in a basis that depend on the scale (or size) parameter $s$. The effective Hamiltonians $H_s$ and the (regularized) canonical Hamiltonian $H_{0}$ are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
We study the asymptotic behavior of the ghost propagator in the quenched SU(3) lattice gauge theory with Wilson action. The study is performed on lattices with a physical volume fixed around 1.6 fm and different lattice spacings: 0.100 fm, 0.070 fm a nd 0.055 fm. We implement an efficient algorithm for computing the Faddeev-Popov operator on the lattice. We are able to extrapolate the lattice data for the ghost propagator towards the continuum and to show that the extrapolated data on each lattice can be described up to four-loop perturbation theory from 2.0 GeV to 6.0 GeV. The three-loop values are consistent with those extracted from previous perturbative studies of the gluon propagator. However the effective $Lambda_{ms}$ scale which reproduces the data does depend strongly upon the order of perturbation theory and on the renormalization scheme used in the parametrization. We show how the truncation of the perturbative series can account for the magnitude of the dependency in this energy range. The contribution of non-perturbative corrections will be discussed elsewhere.
147 - S. P. de Alwis , Z. Lalak 2010
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out, in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
A method of constructing a canonical gauge invariant quantum formulation for a non-gauge classical theory depending on a set of parameters is advanced and then applied to the theory of closed bosonic string interacting with massive background fields. Choosing an ordering prescription and developing a suitable regularization technique we calculate quantum guage algebra up to linear order in background fields. Requirement of closure for the algebra leads to equations of motion for massive background fields which appear to be consistent with the structure of string spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا