ترغب بنشر مسار تعليمي؟ اضغط هنا

The challenging task of determining star formation rates: the case of a massive stellar burst in the brightest cluster galaxy of Phoenix galaxy cluster

113   0   0.0 ( 0 )
 نشر من قبل Rupal Mittal Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Star formation in galaxies at the center of cooling-flow galaxy clusters is an important phenomenon in the context of formation and evolution of massive galaxies in the Universe. Yet, star formation rates (SFRs) in such systems continue to be elusive. We use our Bayesian-motivated spectral energy distribution (SED)-fitting code, BAYESCOOL, to estimate the plausible SFR values in the brightest cluster galaxy of a massive, X-ray luminous galaxy cluster, Phoenix. Previous studies of Phoenix have resulted in the highest measurement of SFR for any galaxy, with the estimates reaching up to 1000 solar masses/yr. However, a very small number of models have been considered in those studies. BAYESCOOL allows us to probe a large parameter space. We consider two models for star formation history, instantaneous bursts and continuous star formation, a wide range of ages for the old and the young stellar population, along with other discrete parameters, such as the initial mass function, metallicities, internal extinction and extinction law. We find that in the absence of any prior except that the maximum cooling rate < 3000 solar masses/yr, the SFR lies in the range (2230-2890) solar masses/yr. If we impose an observational prior on the internal extinction, E(B-V) < 0.6, the best-fit SFR lies in (454-494) solar masses/yr, and we consider this as the most probable range of SFR values for Phoenix. The SFR dependence on the extinction is a reflection of the standard age-extinction degeneracy, which can be overcome by using a prior on one of the two quantities in question.



قيم البحث

اقرأ أيضاً

We investigate the dust-obscured star formation properties of the massive, X-ray selected galaxy cluster MACS J1931.8-2634 at $z$=0.352. Using far-infrared (FIR) imaging in the range 100-500$mu$m obtained with the textit{Herschel} telescope, we extra ct 31 sources (2$sigma$) within $rsim$1 Mpc from the brightest cluster galaxy (BCG). Among these sources we identify six cluster members for which we perform an analysis of their spectral energy distributions (SEDs). We measure total infrared luminosity (L$_{IR}$), star formation rate (SFR) and dust temperature. The BCG, with L$_{IR}$=1.4$times$10$^{12}$L$_odot$ is an Ultra Luminous Infrared Galaxy and hosts a type II AGN. We decompose its FIR SED into AGN and starburst components and find equal contributions from AGN and starburst. We also recompute the SFR of the BCG finding SFR=150$pm$15 M$_odot$yr$^{-1}$. We search for an isobaric cooling flow in the cool core using {sl Chandra} X-ray data, and find no evidence for gas colder than 1.8 keV in the inner 30 kpc, for an upper limit to the istantaneous mass-deposition rate of 58 M$_odot$yr$^{-1}$ at 95 % c.l. This value is $3times$ lower than the SFR in the BCG, suggesting that the on-going SF episode lasts longer than the ICM cooling events.
We investigate the star formation rate and its location in the major merger cluster Abell 2465 at $z$ = 0.245. Optical properties of the cluster are described in Paper I. Measurements of the H$alpha$ and infrared dust emission of galaxies in the clus ter were made with an interference filter centred on the redshifted line at a wavelength of 817 nm and utilized data from the WISE satellite 12 $mu$m band. Imaging in the Johnson $U$ and $B$ bands was obtained, and along with SDSS $u$ and $r$ was used to study the blue fraction, which appears enhanced, as a further signatures of star formation in the cluster. Star formation rates were calculated using standard calibrations. The total star formation rate normalized by the cluster mass, $Sigma SFR/M_{cl}$ compared to compilations for other clusters indicate that the components of Abell 2465 lie above the mean $z$ and $M_{cl}$ relations, suggestive that interacting galaxy clusters have enhanced star formation. The projected radial distribution of the star forming galaxies does not follow a NFW profile and is relatively flat indicating that fewer star forming galaxies are in the cluster centre. The morphologies of the H$alpha$ sources within $R_{200}$ for the cluster as a whole indicate that many are disturbed or merging, suggesting that a combination of merging or harassment is working.
415 - Mike L. Balogh 1998
A comparison of star formation properties as a function of environment is made from the spectra of identically selected cluster and field galaxies in the CNOC 1 redshift survey of over 2000 galaxies in the fields of fifteen X-ray luminous clusters at 0.18<z<0.55. The ratio of bulge luminosity to total galaxy luminosity (B/T) is computed for galaxies in this sample, and this measure of morphology is compared with the galaxy star formation rate as determined from the [OII]3727 emission line. The mean star formation rate of cluster galaxies brighter than M_r= -17.5 + 5 log h is found to vary from 0.17 +- 0.02 h^{-2} M_sun/yr at R200 (1.5-2 Mpc/h) to zero in the cluster center, and is always less than the mean star formation rate of field galaxies, which is 0.39 +- 0.01 h^{-2}M_sun/yr. It is demonstrated that this significant difference is not due exclusively to the difference in morphological type, as parameterized by the B/T value, by correcting for the B/T-radius relation. The distribution of [OII] equivalent widths among cluster galaxies is skewed toward lower values relative to the distribution for field galaxies of comparable physical size, B/T and redshift, with a statistical significance of more than 99%. The cluster environment affects not only the morphological mix of the galaxy population, but also suppresses the star formation rate within those galaxies, relative to morphologically similar galaxies in the field.
We report the results of the Australia Telescope Compact Array (ATCA) 15 mm observation of the Phoenix galaxy cluster possessing an extreme star-burst brightest cluster galaxy (BCG) at the cluster center. We spatially resolved radio emission around t he BCG, and found diffuse bipolar and bar-shape structures extending from the active galactic nucleus (AGN) of the BCG. They are likely radio jets/lobes, whose sizes are ~10-20 kpc and locations are aligned with X-ray cavities. If we assume that the radio jets/lobes expand with the sound velocity, their ages are estimated to be ~10 Myr. We also found compact radio emissions near the center and suggest that they are another young bipolar jets with ~1 Myr of age. Moreover, we found extended radio emission surrounding the AGN and discussed the possibility that the component is a product of the cooling flow, by considering synchrotron radiation partially absorbed by molecular clumps, free-free emission from the warm ionized gas, and the spinning dust emission from dusty circum-galactic medium.
Observations of an ancient stellar stream provide the first evidence of a vanished population of extremely metal-poor stellar clusters. Their remnants might reveal how the early assembly of the Milky Way proceeded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا