ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Radio Jets in Phoenix Galaxy Cluster Center

70   0   0.0 ( 0 )
 نشر من قبل Takuya Akahori
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of the Australia Telescope Compact Array (ATCA) 15 mm observation of the Phoenix galaxy cluster possessing an extreme star-burst brightest cluster galaxy (BCG) at the cluster center. We spatially resolved radio emission around the BCG, and found diffuse bipolar and bar-shape structures extending from the active galactic nucleus (AGN) of the BCG. They are likely radio jets/lobes, whose sizes are ~10-20 kpc and locations are aligned with X-ray cavities. If we assume that the radio jets/lobes expand with the sound velocity, their ages are estimated to be ~10 Myr. We also found compact radio emissions near the center and suggest that they are another young bipolar jets with ~1 Myr of age. Moreover, we found extended radio emission surrounding the AGN and discussed the possibility that the component is a product of the cooling flow, by considering synchrotron radiation partially absorbed by molecular clumps, free-free emission from the warm ionized gas, and the spinning dust emission from dusty circum-galactic medium.

قيم البحث

اقرأ أيضاً

We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z=0.596) with the GMRT at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightes t Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observations show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of $17pm5$ mJy, resulting in a 1.4 GHz radio power of ($10.4pm3.5) times 10^{24}$ W Hz$^{-1}$. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of $-0.84pm0.12$ for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.
The steep spectrum radio source VLSSJ2217.5+5943 shows a complex, filamentary morphology and a curved spectrum. Therefore, the source has previously been classified as a radio phoenix. However, no galaxy cluster associated with this radio source has been confidently detected so far because the source is located in the direction of the innermost zone of the Galactic Plane at b = +2.4 degr (innermost Zone of Avoidance, ZoA). We analysed archival observations in the near infrared (UKIDSS) and mid infrared (Spitzer) to select the galaxies in the immediate neighbourhood of the radio source. A sample of 23 galaxies was selected as candidate cluster members. Furthermore, we carried out deep integral field spectroscopy covering 6450 to 10500 AA with the red unit of the Hobby-Eberly Telescope second generation low resolution spectrograph (LRS2-R). We also reanalysed archival GMRT observations at 325 and 610 MHz. We selected 23 galaxies within a radius of 2.5 arcmin, centered on RA=22:17.5, DEC=+59:43 (J2000). Spectra were obtained for three of the brightest galaxies. For two galaxies we derived redshifts of z = 0.165 and z = 0.161, based on NaD absorption and TiO band heads. Their spectra correspond to E-type galaxies. Both galaxies are spatially associated with VLSSJ2217.5+5943. The spectrum of the third galaxy, which is slightly more distant from the radio source, indicates a LINER at z = 0.042. It is apparently a foreground galaxy with respect to the cluster we identified. VLSSJ2217.5+5943 is associated with a massive galaxy cluster at redshift z = 0.163 +- .003, supporting its classification as radio phoenix.
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in flated bubble located outside the core, but discounted this possibility because it required much too powerful an AGN outburst. Using low-frequency (72-240 MHz) radio data from MWA GLEAM and GMRT, we found that the X-ray structure is, in fact, a giant cavity in the X-ray gas filled with diffuse radio emission with an extraordinarily steep radio spectrum. It thus appears to be a very aged fossil of the most powerful AGN outburst seen in any galaxy cluster ($pVsim 5times 10^{61}$ erg for this cavity). There is no apparent diametrically opposite counterpart either in X-ray or in the radio. It may have aged out of the observable radio band because of the cluster asymmetry. At present, the central AGN exhibits only a weak radio source, so it should have been much more powerful in the past to have produced such a bubble. The AGN is currently starved of accreting cool gas because the gas density peak is displaced by core sloshing. The sloshing itself could have been set off by this extraordinary explosion if it had occurred in an asymmetric gas core. This dinosaur may be an early example of a new class of sources to be uncovered by low-frequency surveys of galaxy clusters.
We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of $z=0.0897$ for the E0-type host galaxy, 2MASX J08231289+0333016, leading to M$_r = -22.6$ and a $1.4,$GHz radio luminosity density of $L_{rm 1.4} = 5.5times10^{24}$ W Hz$^{-1}$. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of $approx8,$arcmin corresponds to $800,$kpc and the full length of the source along the curved jets/trails is $1.1,$Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at $1.2-2.6times10^{43}$ erg s$^{-1}$ for assumed intra-cluster medium temperatures of $1.0-5.0,$keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with $10^7,$yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.
We report new ALMA observations of the CO(3-2) line emission from the $2.1pm0.3times10^{10}rmthinspace M_{odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate o f $500-800rmthinspace M_{odot}rm; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20rm; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا