ﻻ يوجد ملخص باللغة العربية
A comparison of star formation properties as a function of environment is made from the spectra of identically selected cluster and field galaxies in the CNOC 1 redshift survey of over 2000 galaxies in the fields of fifteen X-ray luminous clusters at 0.18<z<0.55. The ratio of bulge luminosity to total galaxy luminosity (B/T) is computed for galaxies in this sample, and this measure of morphology is compared with the galaxy star formation rate as determined from the [OII]3727 emission line. The mean star formation rate of cluster galaxies brighter than M_r= -17.5 + 5 log h is found to vary from 0.17 +- 0.02 h^{-2} M_sun/yr at R200 (1.5-2 Mpc/h) to zero in the cluster center, and is always less than the mean star formation rate of field galaxies, which is 0.39 +- 0.01 h^{-2}M_sun/yr. It is demonstrated that this significant difference is not due exclusively to the difference in morphological type, as parameterized by the B/T value, by correcting for the B/T-radius relation. The distribution of [OII] equivalent widths among cluster galaxies is skewed toward lower values relative to the distribution for field galaxies of comparable physical size, B/T and redshift, with a statistical significance of more than 99%. The cluster environment affects not only the morphological mix of the galaxy population, but also suppresses the star formation rate within those galaxies, relative to morphologically similar galaxies in the field.
We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z=0.834 cluster RX J0152.7-1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph (IMACS) to identify galaxies with z<23.3
We have used a sample of 15749 galaxies taken from the Las Campanas Redshift Survey to investigate the effects of environment on the rate of star formation (SFR) in galaxies. The size and homogeneity of this data set allows us to sample, for the firs
We have measured the equivalent width of the H-alpha emission line for 11006 galaxies brighter than M_b=-19 (LCDM) at 0.05<z<0.1 in the 2dF Galaxy Redshift Survey (2dF), in the fields of seventeen known galaxy clusters. The limited redshift range ens
We combine Spitzer 24micron observations with data from the COMBO-17 survey for ~15,000 0.2<z<1 galaxies to determine how the average star formation rates (SFR) have evolved for galaxy sub-populations of different stellar masses. In the determination
Galaxy mergers and interactions are an integral part of our basic understanding of how galaxies grow and evolve over time. However, the effect that galaxy mergers have on star formation rates (SFR) is contested, with observations of galaxy mergers sh