ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Perform Physics Experiments via Deep Reinforcement Learning

151   0   0.0 ( 0 )
 نشر من قبل Misha Denil
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

When encountering novel objects, humans are able to infer a wide range of physical properties such as mass, friction and deformability by interacting with them in a goal driven way. This process of active interaction is in the same spirit as a scientist performing experiments to discover hidden facts. Recent advances in artificial intelligence have yielded machines that can achieve superhuman performance in Go, Atari, natural language processing, and complex control problems; however, it is not clear that these systems can rival the scientific intuition of even a young child. In this work we introduce a basic set of tasks that require agents to estimate properties such as mass and cohesion of objects in an interactive simulated environment where they can manipulate the objects and observe the consequences. We found that state of art deep reinforcement learning methods can learn to perform the experiments necessary to discover such hidden properties. By systematically manipulating the problem difficulty and the cost incurred by the agent for performing experiments, we found that agents learn different strategies that balance the cost of gathering information against the cost of making mistakes in different situations.

قيم البحث

اقرأ أيضاً

Deep reinforcement learning (deep RL) holds the promise of automating the acquisition of complex controllers that can map sensory inputs directly to low-level actions. In the domain of robotic locomotion, deep RL could enable learning locomotion skil ls with minimal engineering and without an explicit model of the robot dynamics. Unfortunately, applying deep RL to real-world robotic tasks is exceptionally difficult, primarily due to poor sample complexity and sensitivity to hyperparameters. While hyperparameters can be easily tuned in simulated domains, tuning may be prohibitively expensive on physical systems, such as legged robots, that can be damaged through extensive trial-and-error learning. In this paper, we propose a sample-efficient deep RL algorithm based on maximum entropy RL that requires minimal per-task tuning and only a modest number of trials to learn neural network policies. We apply this method to learning walking gaits on a real-world Minitaur robot. Our method can acquire a stable gait from scratch directly in the real world in about two hours, without relying on any model or simulation, and the resulting policy is robust to moderate variations in the environment. We further show that our algorithm achieves state-of-the-art performance on simulated benchmarks with a single set of hyperparameters. Videos of training and the learned policy can be found on the project website.
Learning robust value functions given raw observations and rewards is now possible with model-free and model-based deep reinforcement learning algorithms. There is a third alternative, called Successor Representations (SR), which decomposes the value function into two components -- a reward predictor and a successor map. The successor map represents the expected future state occupancy from any given state and the reward predictor maps states to scalar rewards. The value function of a state can be computed as the inner product between the successor map and the reward weights. In this paper, we present DSR, which generalizes SR within an end-to-end deep reinforcement learning framework. DSR has several appealing properties including: increased sensitivity to distal reward changes due to factorization of reward and world dynamics, and the ability to extract bottleneck states (subgoals) given successor maps trained under a random policy. We show the efficacy of our approach on two diverse environments given raw pixel observations -- simple grid-world domains (MazeBase) and the Doom game engine.
We formulate the problem of sampling and recovering clustered graph signal as a multi-armed bandit (MAB) problem. This formulation lends naturally to learning sampling strategies using the well-known gradient MAB algorithm. In particular, the samplin g strategy is represented as a probability distribution over the individual arms of the MAB and optimized using gradient ascent. Some illustrative numerical experiments indicate that the sampling strategies based on the gradient MAB algorithm outperform existing sampling methods.
95 - Nick Erickson , Qi Zhao 2017
This paper introduces Dex, a reinforcement learning environment toolkit specialized for training and evaluation of continual learning methods as well as general reinforcement learning problems. We also present the novel continual learning method of i ncremental learning, where a challenging environment is solved using optimal weight initialization learned from first solving a similar easier environment. We show that incremental learning can produce vastly superior results than standard methods by providing a strong baseline method across ten Dex environments. We finally develop a saliency method for qualitative analysis of reinforcement learning, which shows the impact incremental learning has on network attention.
Priority dispatching rule (PDR) is widely used for solving real-world Job-shop scheduling problem (JSSP). However, the design of effective PDRs is a tedious task, requiring a myriad of specialized knowledge and often delivering limited performance. I n this paper, we propose to automatically learn PDRs via an end-to-end deep reinforcement learning agent. We exploit the disjunctive graph representation of JSSP, and propose a Graph Neural Network based scheme to embed the states encountered during solving. The resulting policy network is size-agnostic, effectively enabling generalization on large-scale instances. Experiments show that the agent can learn high-quality PDRs from scratch with elementary raw features, and demonstrates strong performance against the best existing PDRs. The learned policies also perform well on much larger instances that are unseen in training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا