ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Successor Reinforcement Learning

164   0   0.0 ( 0 )
 نشر من قبل Ardavan Saeedi
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning robust value functions given raw observations and rewards is now possible with model-free and model-based deep reinforcement learning algorithms. There is a third alternative, called Successor Representations (SR), which decomposes the value function into two components -- a reward predictor and a successor map. The successor map represents the expected future state occupancy from any given state and the reward predictor maps states to scalar rewards. The value function of a state can be computed as the inner product between the successor map and the reward weights. In this paper, we present DSR, which generalizes SR within an end-to-end deep reinforcement learning framework. DSR has several appealing properties including: increased sensitivity to distal reward changes due to factorization of reward and world dynamics, and the ability to extract bottleneck states (subgoals) given successor maps trained under a random policy. We show the efficacy of our approach on two diverse environments given raw pixel observations -- simple grid-world domains (MazeBase) and the Doom game engine.



قيم البحث

اقرأ أيضاً

Dealing with uncertainty is essential for efficient reinforcement learning. There is a growing literature on uncertainty estimation for deep learning from fixed datasets, but many of the most popular approaches are poorly-suited to sequential decisio n problems. Other methods, such as bootstrap sampling, have no mechanism for uncertainty that does not come from the observed data. We highlight why this can be a crucial shortcoming and propose a simple remedy through addition of a randomized untrainable `prior network to each ensemble member. We prove that this approach is efficient with linear representations, provide simple illustrations of its efficacy with nonlinear representations and show that this approach scales to large-scale problems far better than previous attempts.
Reinforcement learning (RL) algorithms are typically limited to learning a single solution of a specified task, even though there often exists diverse solutions to a given task. Compared with learning a single solution, learning a set of diverse solu tions is beneficial because diverse solutions enable robust few-shot adaptation and allow the user to select a preferred solution. Although previous studies have showed that diverse behaviors can be modeled with a policy conditioned on latent variables, an approach for modeling an infinite set of diverse solutions with continuous latent variables has not been investigated. In this study, we propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable. Through continuous control tasks, we demonstrate that our method can learn diverse solutions in a data-efficient manner and that the solutions can be used for few-shot adaptation to solve unseen tasks.
95 - Nick Erickson , Qi Zhao 2017
This paper introduces Dex, a reinforcement learning environment toolkit specialized for training and evaluation of continual learning methods as well as general reinforcement learning problems. We also present the novel continual learning method of i ncremental learning, where a challenging environment is solved using optimal weight initialization learned from first solving a similar easier environment. We show that incremental learning can produce vastly superior results than standard methods by providing a strong baseline method across ten Dex environments. We finally develop a saliency method for qualitative analysis of reinforcement learning, which shows the impact incremental learning has on network attention.
Transfer in Reinforcement Learning (RL) refers to the idea of applying knowledge gained from previous tasks to solving related tasks. Learning a universal value function (Schaul et al., 2015), which generalizes over goals and states, has previously b een shown to be useful for transfer. However, successor features are believed to be more suitable than values for transfer (Dayan, 1993; Barreto et al.,2017), even though they cannot directly generalize to new goals. In this paper, we propose (1) Universal Successor Features (USFs) to capture the underlying dynamics of the environment while allowing generalization to unseen goals and (2) a flexible end-to-end model of USFs that can be trained by interacting with the environment. We show that learning USFs is compatible with any RL algorithm that learns state values using a temporal difference method. Our experiments in a simple gridworld and with two MuJoCo environments show that USFs can greatly accelerate training when learning multiple tasks and can effectively transfer knowledge to new tasks.
Marginalized importance sampling (MIS), which measures the density ratio between the state-action occupancy of a target policy and that of a sampling distribution, is a promising approach for off-policy evaluation. However, current state-of-the-art M IS methods rely on complex optimization tricks and succeed mostly on simple toy problems. We bridge the gap between MIS and deep reinforcement learning by observing that the density ratio can be computed from the successor representation of the target policy. The successor representation can be trained through deep reinforcement learning methodology and decouples the reward optimization from the dynamics of the environment, making the resulting algorithm stable and applicable to high-dimensional domains. We evaluate the empirical performance of our approach on a variety of challenging Atari and MuJoCo environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا