ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraluminous Infrared Galaxies in the AKARI All Sky Survey

214   0   0.0 ( 0 )
 نشر من قبل Ece Kilerci Eser
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new catalog of 118 Ultraluminous Infrared Galaxies (ULIRGs) and one Hyperluminous Infrared Galaxy (HLIRG) by crossmatching AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the Final Data Release of the Two-Degree Field Galaxy Redshift Survey (2dFGRS). 40 of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing/post mergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the AGN fraction and IR luminosity. We show that ULIRGs have a large off-set from the main sequence up to z~1; their off-set from the z~2 main sequence is relatively smaller. We find a consistent result with the previous studies showing that compared to local star forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We for the first time demonstrate that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex - 0.5 dex) is comparable with the scatter of z~2-3 galaxies. Their optical colors show that ULIRGs are mostly blue galaxies and this agrees with previous findings. We provide the largest local (0.050 < z < 0.487) ULIRG catalog with stellar masses, SFRs, gas metallicities and optical colors. Our catalog provides us active galaxies analogous to high-z galaxies in the local Universe where they can be rigorously scrutinized.

قيم البحث

اقرأ أيضاً

We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 F eb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics is the key to achieve sensitivity comparable to or better than that for point sources (< 20 -- 95 [MJy/sr]). We describe current activities and progress that are focused on making high quality all-sky survey images of the diffuse far-infrared emission.
Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~100 and 200 um. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range 50 -- 180 um. Covering >99% of the sky in four photometric bands with four filters centred at 65 um, 90 um, 140 um, and 160 um wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of <10 MJy sr-1, with absolute and relative photometric accuracies of <20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using 90 um, 140 um, and 160 um data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.
We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $mu$m, 90 $mu$m, 140 $mu$m, and 160 $mu$m with spatial resoluti ons ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $sim$50 and 200 $mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.
Context : AKARI is the first Japanese astronomical satellite dedicated to infrar ed astronomy. One of the main purposes of AKARI is the all-sky survey performed with six infrared bands between 9 and 200um during the period from 2006 May 6 to 2007 A ugust 28. In this paper, we present the mid-infrared part (9um and 18um b ands) of the survey carried out with one of the on-board instruments, the Infrar ed Camera (IRC). Aims : We present unprecedented observational results of the 9 and 18um AKARI al l-sky survey and detail the operation and data processing leading to the point s ource detection and measurements. Methods : The raw data are processed to produce small images for every scan and point sources candidates, above the 5-sigma noise level per single scan, are der ived. The celestial coordinates and fluxes of the events are determined statisti cally and the reliability of their detections is secured through multiple detect ions of the same source within milli-seconds, hours, and months from each other. Results : The sky coverage is more than 90% for both bands. A total of 877,091 s ources (851,189 for 9um, 195,893 for 18um) are confirmed and included in the cur rent release of the point source catalogue. The detection limit for point source s is 50mJy and 90mJy for the 9um and 18um bands, respectively. The position accu racy is estimated to be better than 2. Uncertainties in the in-flight absolute flux calibration are estimated to be 3% for the 9um band and 4% for the 18um ban d. The coordinates and fluxes of detected sources in this survey are also compar ed with those of the IRAS survey and found to be statistically consistent.
105 - A. Solarz , A. Pollo , M. Bilicki 2019
We use the new release of the AKARI Far-Infrared all sky Survey matched with the NVSS radio database to investigate the local ($z<0.25$) far infrared-radio correlation (FIRC) of different types of extragalactic sources. To obtain the redshift informa tion for the AKARI FIS sources we crossmatch the catalogue with the SDSS DR8. This also allows us to use emission line properties to divide sources into four categories: i) star-forming galaxies (SFGs), ii) composite galaxies (displaying both star-formation and active nucleus components), iii) Seyfert galaxies, and iv) low-ionization nuclear emission-line region (LINER) galaxies. We find that the Seyfert galaxies have the lowest FIR/radio flux ratios and display excess radio emission when compared to the SFGs. We conclude that FIRC can be used to separate SFGs and AGNs only for the most radio-loud objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا