ترغب بنشر مسار تعليمي؟ اضغط هنا

The Central Region of the Barred Spiral Galaxy NGC1097 Probed by AKARI Near-Infrared Spectroscopy

233   0   0.0 ( 0 )
 نشر من قبل Toru Kondo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the Infrared Camera on board AKARI, we carried out near-infrared (2.5-5.0 micron) spectroscopy of the central kiloparsec region of the barred spiral galaxy, NGC1097, categorized as Seyfert 1 with a circumnuclear starburst ring. Our observations mapped the area of ~50*10 with the resolution of ~5, covering about a half of the ring and the galactic center. As a result, we spatially resolve the starburst ring in the polycyclic aromatic hydrocarbon 3.3 micron, the aliphatic hydrocarbon 3.4-3.6 micron features, and the hydrogen Br alpha 4.05 micron emission. They exhibit spatial distributions significantly different from each other, indicating that the environments vary considerably around the ring. In particular, the aliphatic features are enhanced near the bar connecting the ring with the nucleus, where the structure of hydrocarbon grains seems to be relatively disordered. Near the center, the continuum emission and the CO/SiO absorption features are strong, which indicates that the environments inside the ring are dominated by old stellar populations. The near-infrared spectra do not show any evidence for the presence of nuclear activity.



قيم البحث

اقرأ أيضاً

We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Br-alpha line is predicted to be the brightest among the HI lines under high dust-extinction conditions (A_V>15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected from star formation rate required to explain L_IR, we find that the mean Q_BrA/Q_IR ratio is only 55.5+/-7.5% even in HII galaxies which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Br-alpha line is significant even taking heavy dust extinction into consideration. We propose that dust within HII regions absorbs a significant fraction of ionizing photons.
134 - Sebastian Perez 2009
We present near-infrared VLT ISAAC imaging and spectroscopy of the peculiar Virgo galaxy NGC 4438, whose nucleus has been classified as a LINER. The data are supplemented by mid-infrared imaging, and compared to previous WFPC2 HST broadband images. I mages and position-velocity maps of the [Fe II] and H2 line emissions are presented and compared with the distribution of the optical narrow-line region and radio features. Our results show that shocks (possibly driven by a radio jet) contribute to an important fraction of the excitation of [Fe II], while X-ray heating from a central AGN may be responsible for the H2 excitation. We address the question whether the outflow has an AGN or a starburst origin by providing new estimates of the central star formation rate and the kinetic energy associated with the gas. By fitting a Sersic bulge, an exponential disc and a compact nuclear source to the light distribution, we decomposed NGC 4438s light distribution and found an unresolved nuclear source at 0.8 arcsec resolution with M_K = -18.7 and J-H = 0.69. Our measured bulge velocity dispersion, 142 km/s, together with the standard M_bh-sigma relation, suggests a central black hole mass of log(M_bh/Msun) ~ 7.0. The stellar kinematics measured from the near-infrared CO lines shows a strong peak in the velocity dispersion of 178 km/s in the central 0.5 arcsec, which is possible kinematic evidence of a central black hole. We calculated a general expression for the integrated Sersic profile flux density in elliptical geometry, including the case of disky isophotes.
Optical red spectra of a set of 18 bright barred spiral galaxies are presented. The study is aimed at determining the local kinematics, and the physical conditions of ionized gas in the compact nucleus (inside a diameter of 5) and in the circumnuclea r regions (inside a diameter of 20). Only 8 galaxies showed bright emission from their east and west side of the nucleus. The spectrum of each region was analized separately. In other 10 galaxies the line emission was so weak that we were only able to obtain an average spectrum of the central emission. No emission was detected in the remaining 8 galaxies. An estimate of the dynamical mass is presented based on the observed velocities in the circumnuclear regions. In NGC 4314 and NGC 6951, that show H_alpha emission distributed in circumnuclear ring structures, we determine the [NII]/H_alpha and [SII]/H_alpha ratios for the eastern and western regions of the rings. The velocity difference for the two sides is used to derive the rotation velocity of the gas around the compact nucleus. The ratio [NII]6583/H_alpha is a factor of 2 larger in the compact nucleus of NGC 6951 than in its western side. The electron gas densities have been estimated from the [SII] lines ratio.
182 - H. Kaneda , A. Yasuda , T. Onaka 2012
We investigate the properties of interstellar dust in the Galactic center region toward the Arches and Quintuplet clusters. With the Fourier Transform Spectrometer of the AKARI/Far-Infrared Surveyor, we performed the far-infrared (60 - 140 cm^-1) spe ctral mapping of an area of about 10 x 10 which includes the two clusters to obtain a low-resolution (R = 1.2 cm^-1) spectrum at every spatial bin of 30 x 30. We derive the spatial variations of dust continuum emission at different wavenumbers, which are compared with those of the [O III] 88 micron (113 cm^-1) emission and the OH 119 micron (84 cm^-1) absorption. The spectral fitting shows that two dust modified blackbody components with temperatures of ~20 K and ~50 K can reproduce most of the continuum spectra. For some spectra, however, we find that there exists a significant excess on top of a modified blackbody continuum around 80 - 90 cm^-1 (110 - 130 microns). The warmer dust component is spatially correlated well with the [O III] emission and hence likely to be associated with the highly-ionized gas locally heated by intense radiation from the two clusters. The excess emission probably represents a dust feature, which is found to be spatially correlated with the OH absorption and a CO cloud. We find that a dust model including micron-sized graphite grains can reproduce the observed spectrum with the dust feature fairly well.
We present the results from a VLT/SINFONI and Keck/NIRSPEC near-infrared spectroscopic survey of 16 Lyman-alpha emitters (LAEs) at $z$ = 2.1 - 2.5 in the COSMOS and GOODS-N fields discovered from the HETDEX Pilot Survey. We detect rest-frame optical nebular lines (H$alpha$ and/or [OIII]$lambda$5007) for 10 of the LAEs and measure physical properties, including the star formation rate (SFR), gas-phase metallicity, gas-mass fraction, and Ly$alpha$ velocity offset. We find that LAEs may lie below the mass-metallicity relation for continuum-selected star-forming galaxies at the same redshift. The LAEs all show velocity shifts of Ly$alpha$ relative to the systemic redshift ranging between +85 and +296 km s$^{-1}$ with a mean of +180 km s$^{-1}$. This value is smaller than measured for continuum-selected star-forming galaxies at similar redshifts. The Ly$alpha$ velocity offsets show a moderate correlation with the measured star formation rate (2.5$sigma$), but no significant correlations are seen with the SFR surface density, specific SFR, stellar mass, or dynamical mass ($lesssim$ 1.5$sigma$). Exploring the role of dust, kinematics of the interstellar medium (ISM), and geometry on the escape of Ly$alpha$ photons, we find no signature of selective quenching of resonantly scattered Ly$alpha$ photons. However, we also find no evidence that a clumpy ISM is enhancing the Ly$alpha$ equivalent width. Our results suggest that the low metallicity in LAEs may be responsible for yielding an environment with a low neutral hydrogen column density as well as less dust, easing the escape of Ly$alpha$ photons over that in continuum-selected star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا