ﻻ يوجد ملخص باللغة العربية
We propose a new kernel for Metropolis Hastings called Directional Metropolis Hastings (DMH) with multivariate update where the proposal kernel has state dependent covariance matrix. We use the derivative of the target distribution at the current state to change the orientation of the proposal distribution, therefore producing a more plausible proposal. We study the conditions for geometric ergodicity of our algorithm and provide necessary and sufficient conditions for convergence. We also suggest a scheme for adaptively update the variance parameter and study the conditions of ergodicity of the adaptive algorithm. We demonstrate the performance of our algorithm in a Bayesian generalized linear model problem.
MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper an approach to reduce the computational costs of such algorithms by a si
In this article we propose multiplication based random walk Metropolis Hastings (MH) algorithm on the real line. We call it the random dive MH (RDMH) algorithm. This algorithm, even if simple to apply, was not studied earlier in Markov chain Monte Ca
Statistical Data Assimilation (SDA) is the transfer of information from field or laboratory observations to a user selected model of the dynamical system producing those observations. The data is noisy and the model has errors; the information transf
This paper develops a Bayesian computational platform at the interface between posterior sampling and optimization in models whose marginal likelihoods are difficult to evaluate. Inspired by adversarial optimization, namely Generative Adversarial Net
Bayesian modelling and computational inference by Markov chain Monte Carlo (MCMC) is a principled framework for large-scale uncertainty quantification, though is limited in practice by computational cost when implemented in the simplest form that req