ترغب بنشر مسار تعليمي؟ اضغط هنا

The Geometry of Synchronization Problems and Learning Group Actions

175   0   0.0 ( 0 )
 نشر من قبل Tingran Gao
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a geometric framework that characterizes the synchronization problem --- the problem of consistently registering or aligning a collection of objects. The theory we formulate characterizes the cohomological nature of synchronization based on the classical theory of fibre bundles. We first establish the correspondence between synchronization problems in a topological group $G$ over a connected graph $Gamma$ and the moduli space of flat principal $G$-bundles over $Gamma$, and develop a discrete analogy of the renowned theorem of classifying flat principal bundles with fix base and structural group using the representation variety. In particular, we show that prescribing an edge potential on a graph is equivalent to specifying an equivalence class of flat principal bundles, of which the triviality of holonomy dictates the synchronizability of the edge potential. We then develop a twisted cohomology theory for associated vector bundles of the flat principal bundle arising from an edge potential, which is a discrete version of the twisted cohomology in differential geometry. This theory realizes the obstruction to synchronizability as a cohomology group of the twisted de Rham cochain complex. We then build a discrete twisted Hodge theory --- a fibre bundle analog of the discrete Hodge theory on graphs --- which geometrically realizes the graph connection Laplacian as a Hodge Laplacian of degree zero. Motivated by our geometric framework, we study the problem of learning group actions --- partitioning a collection of objects based on the local synchronizability of pairwise correspondence relations. A dual interpretation is to learn finitely generated subgroups of an ambient transformation group from noisy observed group elements. A synchronization-based algorithm is also provided, and we demonstrate its efficacy using simulations and real data.



قيم البحث

اقرأ أيضاً

Gaussian double Markovian models consist of covariance matrices constrained by a pair of graphs specifying zeros simultaneously in the covariance matrix and its inverse. We study the semi-algebraic geometry of these models, in particular their dimens ion, smoothness and connectedness. Results on their vanishing ideals and conditional independence ideals are also included, and we put them into the general framework of conditional independence models. We end with several open questions and conjectures.
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an $n$-sample in a space $M$ can be considered as an e lement of the quotient space of $M^n$ modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when $M$ is a manifold or path-metric space, respectively. These results are non-trivial even when $M$ is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on $M$. We exhibit Frechet means and $k$-means as metric projections onto 1-skeleta or $k$-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile fonction which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
Motivated by geometric problems in signal processing, computer vision, and structural biology, we study a class of orbit recovery problems where we observe very noisy copies of an unknown signal, each acted upon by a random element of some group (suc h as Z/p or SO(3)). The goal is to recover the orbit of the signal under the group action in the high-noise regime. This generalizes problems of interest such as multi-reference alignment (MRA) and the reconstruction problem in cryo-electron microscopy (cryo-EM). We obtain matching lower and upper bounds on the sample complexity of these problems in high generality, showing that the statistical difficulty is intricately determined by the invariant theory of the underlying symmetry group. In particular, we determine that for cryo-EM with noise variance $sigma^2$ and uniform viewing directions, the number of samples required scales as $sigma^6$. We match this bound with a novel algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from heterogeneous cryo-EM samples.
Designing experiments for generalized linear models is difficult because optimal designs depend on unknown parameters. Here we investigate local optimality. We propose to study for a given design its region of optimality in parameter space. Often the se regions are semi-algebraic and feature interesting symmetries. We demonstrate this with the Rasch Poisson counts model. For any given interaction order between the explanatory variables we give a characterization of the regions of optimality of a special saturated design. This extends known results from the case of no interaction. We also give an algebraic and geometric perspective on optimality of experimental designs for the Rasch Poisson counts model using polyhedral and spectrahedral geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا