ترغب بنشر مسار تعليمي؟ اضغط هنا

The accretion rate dependence of burst oscillation amplitude

128   0   0.0 ( 0 )
 نشر من قبل Laura Ootes
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron stars in low mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analysed previously by Muno et al. (2004), who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ($A_text{rms}leq0.10$) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes ($0.05leq A_text{rms}leq0.20$). In this paper we present the results of our analysis and discuss these in the light of current burst oscillation models. Additionally, we investigate the bursts of two sources without previously detected oscillations. Despite that these sources have been observed at accretion rates where burst oscillations might be expected, we find their behaviour to be not anomalous compared to oscillation sources.



قيم البحث

اقرأ أيضاً

Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars in binary systems. Motivated by high quality burst rate data emerging from large sta tistical studies, we report general calculations relating bursting rate to mass accretion rate and neutron star rotation frequency. In this first work we neglect general relativistic effects and accretion topology, though we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting neutron star. We also use the observed behaviour of burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long standing problem of the observed decrease of burst rate with increasing mass accretion that follows naturally from these calculations: when accretion rate crosses a certain threshold, ignition moves away from its initially preferential site and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.
118 - H. Meusinger , V. Weiss 2013
We compiled a catalogue of about 4000 SDSS quasars including individual estimators V for the variability strength, virial black hole masses M, and mass accretion rates dM/dt from the Davis-Laor scaling relation. We confirm significant anti-correlatio ns between V and dM/dt, the Eddington ratio, and the bolometric luminosity L, respectively. A weak, statistically not significant positive trend is indicated for the dependence of V on M. As a side product, we find a strong correlation of the radiative efficiency with M and show that this trend is most likely produced by selection effects in combination with the mass errors and the use of the scaling relation for dM/dt. The anti-correlations found for V cannot be explained in such a way. The strongest anti-correlation is found with dM/dt. However, it is difficult to decide which of the quantities (L, Eddington ratio, dM/dt) is intrinsically correlated with V and which of the observed correlations are produced by the relations between these quantities. A V-dM/dt anti-correlation is qualitatively expected for the strongly inhomogeneous accretion disks. We argue that several observed variability properties are not adequately explained by the simple multi-temperature black-body model of a standard disk and suggest to check whether the strongly inhomogeneous disk model is capable of reproducing these observations better.
We have examined a sample of 13 sub-Eddington supermassive black holes hosted by galaxies spanning a variety of morphological classifications to further understand the empirical fundamental plane of black hole activity. This plane describes black hol es from stellar-mass to supermassive and relates the mass of an accreting black hole and its radio and X-ray luminosities. A key factor in studying the fundamental plane is the turnover frequency, the frequency at which the radio continuum emission becomes optically thin. We measured this turnover frequency using new VLA observations combined, when necessary, with archival Chandra observations. Radio observations are in the range of 5--40 GHz across four frequency bands in B-configuration, giving high spatial resolution to focus on the core emission. We use Markov Chain Monte Carlo methods to fit the continuum emission in order to find the turnover frequency. After testing for correlations, the turnover frequency does not display a significant dependence on either mass or mass accretion rate, indicating that more complicated physics than simple scaling and optical depth effects are at play, as has been suggested by recent theoretical work.
We investigate the frequency and amplitude of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary (NS LMXB) 4U 1636-53 using Rossi X-ray Timing Explorer observations. We find that no mHz QPOs appear when th e source is in the hard spectral state. We also find that there is no significant correlation between the frequency and the fractional rms amplitude of the mHz QPOs. Notwithstanding, for the first time, we find that the absolute RMS amplitude of the mHz QPOs is insensitive to the parameter Sa, which measures the position of the source in the colour-colour diagram and is usually assumed to be an increasing function of mass accretion rate. This finding indicates that the transition from marginally stable burning to stable burning or unstable burning could happen very rapidly since, before the transition, the mHz QPOs do not gradually decay as the rate further changes.
The formation of the most massive quasars observed at high redshifts requires extreme inflows of gas down to the length scales of the central compact object. Here, we estimate the maximum inflow rate allowed by gravity down to the surface of supermas sive stars, the possible progenitors of these supermassive black holes. We use the continuity equation and the assumption of free-fall to derive maximum allowed inflow rates for various density profiles. We apply our approach to the mass-radius relation of rapidly accreting supermassive stars to estimate an upper limit to the accretion rates allowed during the formation of these objects. We find that the maximum allowed rate $dot M_{rm max}$ is given uniquely by the compactness of the accretor. For the compactness of rapidly accreting supermassive stars, $dot M_{rm max}$ is related to the stellar mass $M$ by a power-law $dot M_{rm max}propto M^{3/4}$. The rates of atomically cooled halos (0.1 -- 10 M$_odot$ yr$^{-1}$) are allowed as soon as $Mgtrsim1$ M$_odot$. The largest rates expected in galaxy mergers ($10^4-10^5$ M$_odot$ yr$^{-1}$) become accessible once the accretor is supermassive ($Mgtrsim10^4$ M$_odot$). These results suggest that supermassive stars can accrete up to masses $>10^6$ M$_odot$ before they collapse via the general-relativistic instability. At such masses, the collapse is expected to lead to the direct formation of a supermassive black hole even within metal-rich gas, resulting in a black hole seed that is significantly heavier than in conventional direct collapse models for atomic cooling halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا