ﻻ يوجد ملخص باللغة العربية
The formation of the most massive quasars observed at high redshifts requires extreme inflows of gas down to the length scales of the central compact object. Here, we estimate the maximum inflow rate allowed by gravity down to the surface of supermassive stars, the possible progenitors of these supermassive black holes. We use the continuity equation and the assumption of free-fall to derive maximum allowed inflow rates for various density profiles. We apply our approach to the mass-radius relation of rapidly accreting supermassive stars to estimate an upper limit to the accretion rates allowed during the formation of these objects. We find that the maximum allowed rate $dot M_{rm max}$ is given uniquely by the compactness of the accretor. For the compactness of rapidly accreting supermassive stars, $dot M_{rm max}$ is related to the stellar mass $M$ by a power-law $dot M_{rm max}propto M^{3/4}$. The rates of atomically cooled halos (0.1 -- 10 M$_odot$ yr$^{-1}$) are allowed as soon as $Mgtrsim1$ M$_odot$. The largest rates expected in galaxy mergers ($10^4-10^5$ M$_odot$ yr$^{-1}$) become accessible once the accretor is supermassive ($Mgtrsim10^4$ M$_odot$). These results suggest that supermassive stars can accrete up to masses $>10^6$ M$_odot$ before they collapse via the general-relativistic instability. At such masses, the collapse is expected to lead to the direct formation of a supermassive black hole even within metal-rich gas, resulting in a black hole seed that is significantly heavier than in conventional direct collapse models for atomic cooling halos.
Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z~6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretio
Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars in binary systems. Motivated by high quality burst rate data emerging from large sta
We study properties of luminous X-ray pulsars using a simplified model of the accretion column. The maximal possible luminosity is calculated as a function of the neutron star (NS) magnetic field and spin period. It is shown that the luminosity can r
The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous studies have focused on the disruption by single black holes, for which the fallback rate decays as~$propto t^{-5/3}$. In this paper, we generalise the st
Supermassive stars born from pristine gas in atomically-cooled haloes are thought to be the progenitors of supermassive black holes at high redshifts. However, the way they accrete their mass is still an unsolved problem. In particular, for accretion