ﻻ يوجد ملخص باللغة العربية
We investigate the frequency and amplitude of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary (NS LMXB) 4U 1636-53 using Rossi X-ray Timing Explorer observations. We find that no mHz QPOs appear when the source is in the hard spectral state. We also find that there is no significant correlation between the frequency and the fractional rms amplitude of the mHz QPOs. Notwithstanding, for the first time, we find that the absolute RMS amplitude of the mHz QPOs is insensitive to the parameter Sa, which measures the position of the source in the colour-colour diagram and is usually assumed to be an increasing function of mass accretion rate. This finding indicates that the transition from marginally stable burning to stable burning or unstable burning could happen very rapidly since, before the transition, the mHz QPOs do not gradually decay as the rate further changes.
We studied the harmonics of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary 4U 1636-53 using the Rossi X-ray Timing Explorer observations. We detected the harmonics of the mHz QPOs in 73 data intervals,
We present for the neutron-star low-mass X-ray binary 4U 1636$-$53, and for the first time for any source of kilohertz quasi-periodic oscillations (kHz QPOs), the two-dimensional behaviour of the fractional rms amplitude of the kHz QPOs in the parame
We analysed all archival RXTE observations of the neutron-star low-mass X-ray binary 4U 1636-53 up to May 2010. In 528 out of 1280 observations we detected kilohertz quasi-periodic oscillations (kHz QPOs), with ~ 65% of these detections corresponding
We used two XMM-Newton and six Neutron Star Interior Composition Explorer (NICER) observations to investigate the fractional rms amplitude of the millihertz quasi-periodic oscillations (mHz QPOs) in the neutron-star low-mass X-ray binary 4U 1636-53.
Based on previous studies of quasi-periodic oscillations in neutron star LMXBs, mHz quasi-periodic oscillations (QPO) are believed to be related to `marginally stable burning on the neutron star (NS) surface. Our study of phase resolved energy spectr