ﻻ يوجد ملخص باللغة العربية
In this work we give, for the first time, the full relativistic Lagrangian density describing the motion of induced electric dipoles in the electric fields which induce the dipole, and the magnetic fields which generate the HMW topological phase. We then use this relativistic Lagrangian density to derive the complete set of conditions for producing topological phases with induced dipoles. We also give the relativistic Lagrangian density describing the motion of induced magnetic dipoles in the magnetic fields which induce the dipole, and the electric fields which generate the AC topological phase, and derive the conditions for this AC phase to be topological. These conditions have been incompletely discussed in previous studies. We note that, in both the AC and HMW cases, the topological phases are generated by the cross product of electric and magnetic fields in the form $bm{B} times bm{E}$ which reinforces the dual nature of these two topological phases.
We theoretically investigate the optomechanically induced transparency (OMIT) phenomenon in a N-cavity optomechanical system doped with a pair of Rydberg atoms with the presence of a strong pump field and a weak probe field applied to the Nth cavity.
We study exclusive quarkonium production in the dipole picture at next-to-leading order (NLO) accuracy, using the non-relativistic expansion for the quarkonium wavefunction. This process offers one of the best ways to obtain information about gluon d
We describe topologically ordered and fracton ordered states on novel geometries which do not have an underlying manifold structure. Using tree graphs such as the $k$-coordinated Bethe lattice ${cal B}(k)$ and a hypertree called the $(k,n)$-hyper-Bet
Bethe-Salpeter equation, for massless exchange and large fine structure constant $alpha>pi/4$, in addition to the Balmer series, provides another (abnormal) series of energy levels which are not given by the Schrodinger equation. So strong field can
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero conc