ترغب بنشر مسار تعليمي؟ اضغط هنا

Limitations of Lazy Training of Two-layers Neural Networks

119   0   0.0 ( 0 )
 نشر من قبل Andrea Montanari
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the supervised learning problem under either of the following two models: (1) Feature vectors ${boldsymbol x}_i$ are $d$-dimensional Gaussians and responses are $y_i = f_*({boldsymbol x}_i)$ for $f_*$ an unknown quadratic function; (2) Feature vectors ${boldsymbol x}_i$ are distributed as a mixture of two $d$-dimensional centered Gaussians, and $y_i$s are the corresponding class labels. We use two-layers neural networks with quadratic activations, and compare three different learning regimes: the random features (RF) regime in which we only train the second-layer weights; the neural tangent (NT) regime in which we train a linearization of the neural network around its initialization; the fully trained neural network (NN) regime in which we train all the weights in the network. We prove that, even for the simple quadratic model of point (1), there is a potentially unbounded gap between the prediction risk achieved in these three training regimes, when the number of neurons is smaller than the ambient dimension. When the number of neurons is larger than the number of dimensions, the problem is significantly easier and both NT and NN learning achieve zero risk.



قيم البحث

اقرأ أيضاً

Consider the problem: given the data pair $(mathbf{x}, mathbf{y})$ drawn from a population with $f_*(x) = mathbf{E}[mathbf{y} | mathbf{x} = x]$, specify a neural network model and run gradient flow on the weights over time until reaching any stationa rity. How does $f_t$, the function computed by the neural network at time $t$, relate to $f_*$, in terms of approximation and representation? What are the provable benefits of the adaptive representation by neural networks compared to the pre-specified fixed basis representation in the classical nonparametric literature? We answer the above questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the training process of neural networks. Firstly, we show that when reaching any local stationarity, gradient flow learns an adaptive RKHS representation and performs the global least-squares projection onto the adaptive RKHS, simultaneously. Secondly, we prove that as the RKHS is data-adaptive and task-specific, the residual for $f_*$ lies in a subspace that is potentially much smaller than the orthogonal complement of the RKHS. The result formalizes the representation and approximation benefits of neural networks. Lastly, we show that the neural network function computed by gradient flow converges to the kernel ridgeless regression with an adaptive kernel, in the limit of vanishing regularization. The adaptive kernel viewpoint provides new angles of studying the approximation, representation, generalization, and optimization advantages of neural networks.
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{otimes l}$ of rank $r$ (where $rll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
The backpropagation algorithm has long been the canonical training method for neural networks. Modern paradigms are implicitly optimized for it, and numerous guidelines exist to ensure its proper use. Recently, synthetic gradients methods -where the error gradient is only roughly approximated - have garnered interest. These methods not only better portray how biological brains are learning, but also open new computational possibilities, such as updating layers asynchronously. Even so, they have failed to scale past simple tasks like MNIST or CIFAR-10. This is in part due to a lack of standards, leading to ill-suited models and practices forbidding such methods from performing to the best of their abilities. In this work, we focus on direct feedback alignment and present a set of best practices justified by observations of the alignment angles. We characterize a bottleneck effect that prevents alignment in narrow layers, and hypothesize it may explain why feedback alignment methods have yet to scale to large convolutional networks.
This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The b asic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NNs weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.
We consider the approximation rates of shallow neural networks with respect to the variation norm. Upper bounds on these rates have been established for sigmoidal and ReLU activation functions, but it has remained an important open problem whether th ese rates are sharp. In this article, we provide a solution to this problem by proving sharp lower bounds on the approximation rates for shallow neural networks, which are obtained by lower bounding the $L^2$-metric entropy of the convex hull of the neural network basis functions. In addition, our methods also give sharp lower bounds on the Kolmogorov $n$-widths of this convex hull, which show that the variation spaces corresponding to shallow neural networks cannot be efficiently approximated by linear methods. These lower bounds apply to both sigmoidal activation functions with bounded variation and to activation functions which are a power of the ReLU. Our results also quantify how much stronger the Barron spectral norm is than the variation norm and, combined with previous results, give the asymptotics of the $L^infty$-metric entropy up to logarithmic factors in the case of the ReLU activation function.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا